BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2901415)

  • 1. The kinetic mechanism of beef kidney D-aspartate oxidase.
    Negri A; Massey V; Williams CH; Schopfer LM
    J Biol Chem; 1988 Sep; 263(27):13557-63. PubMed ID: 2901415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic mechanisms of glycine oxidase from Bacillus subtilis.
    Molla G; Motteran L; Job V; Pilone MS; Pollegioni L
    Eur J Biochem; 2003 Apr; 270(7):1474-82. PubMed ID: 12654003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic aspects of the covalent flavoprotein dimethylglycine oxidase of Arthrobacter globiformis studied by stopped-flow spectrophotometry.
    Basran J; Bhanji N; Basran A; Nietlispach D; Mistry S; Meskys R; Scrutton NS
    Biochemistry; 2002 Apr; 41(14):4733-43. PubMed ID: 11926836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of meso-diaminosuccinic acid, a possible natural substrate for D-aspartate oxidase.
    Rinaldi A; Pellegrini M; Crifò C; De Marco C
    Eur J Biochem; 1981 Jul; 117(3):635-8. PubMed ID: 7285908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinetic mechanism of D-amino acid oxidase with D-alpha-aminobutyrate as substrate. Effect of enzyme concentration on the kinetics.
    Fitzpatrick PF; Massey V
    J Biol Chem; 1982 Nov; 257(21):12916-23. PubMed ID: 6127341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic studies, mechanism, and substrate specificity of amadoriase I from Aspergillus sp.
    Wu X; Palfey BA; Mossine VV; Monnier VM
    Biochemistry; 2001 Oct; 40(43):12886-95. PubMed ID: 11669625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of stopped flow to steady state parameters in the dimeric copper amine oxidase from Hansenula polymorpha and the role of zinc in inhibiting activity at alternate copper-containing subunits.
    Takahashi K; Klinman JP
    Biochemistry; 2006 Apr; 45(14):4683-94. PubMed ID: 16584203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of the flavoenzyme D-aspartate oxidase from Octopus vulgaris.
    Tedeschi G; Negri A; Ceciliani F; Ronchi S; Vetere A; D'Aniello G; D'Aniello A
    Biochim Biophys Acta; 1994 Aug; 1207(2):217-22. PubMed ID: 7915543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the kinetic mechanism of pig kidney D-amino acid oxidase by site-directed mutagenesis of tyrosine 224 and tyrosine 228.
    Pollegioni L; Fukui K; Massey V
    J Biol Chem; 1994 Dec; 269(50):31666-73. PubMed ID: 7989339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and mechanistic studies on the reactions of 2-aminobenzoyl-CoA monooxygenase/reductase.
    Langkau B; Ghisla S
    Eur J Biochem; 1995 Jun; 230(2):686-97. PubMed ID: 7607243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and structural characterization of D-aspartate oxidase from porcine kidney: non-Michaelis kinetics due to substrate activation.
    Yamamoto A; Tanaka H; Ishida T; Horiike K
    J Biochem; 2007 Mar; 141(3):363-76. PubMed ID: 17234685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of S-e-carboxymethyl-selenocysteine by L-aminoacid oxidase and by D-aspartate oxidase.
    De Marco C; Rinaldi A; Dessi MR; Dernini S
    Mol Cell Biochem; 1976 Aug; 12(2):89-92. PubMed ID: 8703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanism of L-α-glycerophosphate oxidase from Mycoplasma pneumoniae.
    Maenpuen S; Watthaisong P; Supon P; Sucharitakul J; Parsonage D; Karplus PA; Claiborne A; Chaiyen P
    FEBS J; 2015 Aug; 282(16):3043-59. PubMed ID: 25712468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic mechanism of the oxidative demethylation of 4-(methoxymethyl)phenol by vanillyl-alcohol oxidase. Evidence for formation of a p-quinone methide intermediate.
    Fraaije MW; van Berkel WJ
    J Biol Chem; 1997 Jul; 272(29):18111-6. PubMed ID: 9218444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactions of dimethylsulfoxide reductase from Rhodobacter capsulatus with dimethyl sulfide and with dimethyl sulfoxide: complexities revealed by conventional and stopped-flow spectrophotometry.
    Adams B; Smith AT; Bailey S; McEwan AG; Bray RC
    Biochemistry; 1999 Jun; 38(26):8501-11. PubMed ID: 10387097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase.
    Messner KR; Imlay JA
    J Biol Chem; 2002 Nov; 277(45):42563-71. PubMed ID: 12200425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The oxidation of cyclothionine by D-aspartate oxidase.
    Solinas SP; Santoro L; Antonucci A; Cavallini D
    Physiol Chem Phys Med NMR; 1986; 18(1):71-4. PubMed ID: 3774897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.