BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2901415)

  • 61. Kinetic mechanism of monoamine oxidase A.
    Ramsay RR
    Biochemistry; 1991 May; 30(18):4624-9. PubMed ID: 2021654
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Kinetic mechanism of vanillyl-alcohol oxidase with short-chain 4-alkylphenols.
    Fraaije MW; van den Heuvel RH; Roelofs JC; van Berkel WJ
    Eur J Biochem; 1998 May; 253(3):712-9. PubMed ID: 9654070
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Distribution and characteristics of D-amino acid and D-aspartate oxidases in fish tissues.
    Sarower MG; Matsui T; Abe H
    J Exp Zool A Comp Exp Biol; 2003 Feb; 295(2):151-9. PubMed ID: 12541299
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Studies on the oxidative half-reaction of xanthine oxidase.
    Hille R; Massey V
    J Biol Chem; 1981 Sep; 256(17):9090-5. PubMed ID: 6894924
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mechanisms of reaction of some flavoprotein enzymes with oxygen.
    Gibson QH
    J Gen Physiol; 1965 Sep; 49(1):Suppl:201-11. PubMed ID: 4379287
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis.
    Nidetzky B; Klimacek M; Mayr P
    Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis.
    Campbell FE; Cassano AG; Anderson VE; Harris ME
    J Mol Biol; 2002 Mar; 317(1):21-40. PubMed ID: 11916377
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The oxidative half-reaction of xanthine dehydrogenase with NAD; reaction kinetics and steady-state mechanism.
    Harris CM; Massey V
    J Biol Chem; 1997 Nov; 272(45):28335-41. PubMed ID: 9353290
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Insights on the mechanism of amine oxidation catalyzed by D-arginine dehydrogenase through pH and kinetic isotope effects.
    Yuan H; Xin Y; Hamelberg D; Gadda G
    J Am Chem Soc; 2011 Nov; 133(46):18957-65. PubMed ID: 21999550
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Reactivity of medium-chain acyl-CoA dehydrogenase toward molecular oxygen.
    Wang R; Thorpe C
    Biochemistry; 1991 Aug; 30(32):7895-901. PubMed ID: 1868064
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [The mechanism of action of d-amino acid oxidase. I. Evidence for a free radical mechanism of the reaction catalyzed b a dimeric form of the enzyme].
    Bresler SE; Vasil'eva NN; Kazbekov EN
    Mol Biol (Mosk); 1976; 10(2):260-9. PubMed ID: 7743
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Oxygen reactivity of an NADH oxidase C42S mutant: evidence for a C(4a)-peroxyflavin intermediate and a rate-limiting conformational change.
    Mallett TC; Claiborne A
    Biochemistry; 1998 Jun; 37(24):8790-802. PubMed ID: 9628741
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Kinetic studies on the reaction of p-hydroxybenzoate hydroxylase. Agreement of steady state and rapid reaction data.
    Husain M; Massey V
    J Biol Chem; 1979 Jul; 254(14):6657-66. PubMed ID: 36402
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Aspartate 120 of Escherichia coli methylenetetrahydrofolate reductase: evidence for major roles in folate binding and catalysis and a minor role in flavin reactivity.
    Trimmer EE; Ballou DP; Galloway LJ; Scannell SA; Brinker DR; Casas KR
    Biochemistry; 2005 May; 44(18):6809-22. PubMed ID: 15865426
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Folate activation and catalysis in methylenetetrahydrofolate reductase from Escherichia coli: roles for aspartate 120 and glutamate 28.
    Trimmer EE; Ballou DP; Ludwig ML; Matthews RG
    Biochemistry; 2001 May; 40(21):6216-26. PubMed ID: 11371182
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The room temperature reaction of carbon monoxide and oxygen with the cytochrome bd quinol oxidase from Escherichia coli.
    Hill BC; Hill JJ; Gennis RB
    Biochemistry; 1994 Dec; 33(50):15110-5. PubMed ID: 7999770
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The role of tyrosine 343 in substrate binding and catalysis by human sulfite oxidase.
    Wilson HL; Rajagopalan KV
    J Biol Chem; 2004 Apr; 279(15):15105-13. PubMed ID: 14729666
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Factors that affect oxygen activation and coupling of the two redox cycles in the aromatization reaction catalyzed by NikD, an unusual amino acid oxidase.
    Kommoju PR; Bruckner RC; Ferreira P; Carrell CJ; Mathews FS; Jorns MS
    Biochemistry; 2009 Oct; 48(40):9542-55. PubMed ID: 19702312
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Studies on the reaction of D-amino acid oxidase with beta-cyano-D-alanine. Observation of an intermediary stable charge transfer complex.
    Miura R; Shiga K; Miyake Y; Watari H; Yamano T
    J Biochem; 1980 May; 87(5):1469-81. PubMed ID: 6104660
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Flavin-dependent alcohol oxidase from yeast. Studies on the catalytic mechanism and inactivation during turnover.
    Geissler J; Ghisla S; Kroneck PM
    Eur J Biochem; 1986 Oct; 160(1):93-100. PubMed ID: 3533534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.