BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29016105)

  • 1. Aggregation-Induced Emission Luminogen with Deep-Red Emission for Through-Skull Three-Photon Fluorescence Imaging of Mouse.
    Wang Y; Chen M; Alifu N; Li S; Qin W; Qin A; Tang BZ; Qian J
    ACS Nano; 2017 Oct; 11(10):10452-10461. PubMed ID: 29016105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues.
    Wan H; Yue J; Zhu S; Uno T; Zhang X; Yang Q; Yu K; Hong G; Wang J; Li L; Ma Z; Gao H; Zhong Y; Su J; Antaris AL; Xia Y; Luo J; Liang Y; Dai H
    Nat Commun; 2018 Mar; 9(1):1171. PubMed ID: 29563581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hot-Band-Absorption-Induced Anti-Stokes Fluorescence of Aggregation-Induced Emission Dots and the Influence on the Nonlinear Optical Effect.
    Zhang Y; Zhou J; Peng S; Yu W; Fan X; Liu W; Ye Z; Qi J; Feng Z; Qian J
    Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo deep brain multiphoton fluorescence imaging emitting at NIR-I and NIR-II and excited at NIR-IV.
    Zhong J; Zhang Y; Chen X; Tong S; Deng X; Huang J; Li Z; Zhang C; Gao Z; Li J; Qiu P; Wang K
    J Biophotonics; 2024 Apr; 17(4):e202300422. PubMed ID: 38211977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in Two-Photon Imaging in Plants.
    Mizuta Y
    Plant Cell Physiol; 2021 Nov; 62(8):1224-1230. PubMed ID: 34019083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Photon Absorption Aggregation-Induced Emission Luminogen/Paclitaxel Nanoparticles for Cancer Theranostics.
    Zhu L; Wang Y; Song J; Sheng Z; Qi J; Li Y; Li G; Tang BZ
    ACS Appl Mater Interfaces; 2024 May; ():. PubMed ID: 38752796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Two- and Three-Photon Deep Imaging of Autofluorescence in Bacterial Communities.
    Fernández A; Classen A; Josyula N; Florence JT; Sokolov AV; Scully MO; Straight P; Verhoef AJ
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging.
    Wang Y; Hu R; Xi W; Cai F; Wang S; Zhu Z; Bai R; Qian J
    Biomed Opt Express; 2015 Oct; 6(10):3783-94. PubMed ID: 26504629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalized AIE nanoparticles with efficient deep-red emission, mitochondrial specificity, cancer cell selectivity and multiphoton susceptibility.
    Nicol A; Qin W; Kwok RTK; Burkhartsmeyer JM; Zhu Z; Su H; Luo W; Lam JWY; Qian J; Wong KS; Tang BZ
    Chem Sci; 2017 Jun; 8(6):4634-4643. PubMed ID: 28970884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates.
    Cai Z; Zhu L; Wang M; Roe AW; Xi W; Qian J
    Theranostics; 2020; 10(9):4265-4276. PubMed ID: 32226552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-photon imaging of mouse brain structure and function through the intact skull.
    Wang T; Ouzounov DG; Wu C; Horton NG; Zhang B; Wu CH; Zhang Y; Schnitzer MJ; Xu C
    Nat Methods; 2018 Oct; 15(10):789-792. PubMed ID: 30202059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optical clearing imaging window: Realization of mouse brain imaging and manipulation through scalp and skull.
    Feng W; Liu CJ; Wang L; Zhang C
    J Cereb Blood Flow Metab; 2023 Dec; 43(12):2105-2119. PubMed ID: 36999642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging.
    Wang S; Xi W; Cai F; Zhao X; Xu Z; Qian J; He S
    Theranostics; 2015; 5(3):251-66. PubMed ID: 25553113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A near-infrared fluorescent probe with two-photon excitation for in situ imaging of NQO1 in human colorectum cancer tissue.
    Jiang W; An W; Huang Z; Xu C; Shen Q; Pu C; Zhang S; Wu Q; Li L; Yu C
    Talanta; 2024 Jul; 274():126018. PubMed ID: 38593645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overcome the "Buckets Effect": Integration of AIEgens into Proteins for Fluorescence-Enhanced Two-Photon Imaging.
    Fan M; Li Z; Feng G; Zhang Y; Zhang W; Yang C; Shao Y; Liao C; Xu G; Xu Z
    Adv Healthc Mater; 2023 Nov; 12(28):e2301568. PubMed ID: 37499068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A large, switchable optical clearing skull window for cerebrovascular imaging.
    Zhang C; Feng W; Zhao Y; Yu T; Li P; Xu T; Luo Q; Zhu D
    Theranostics; 2018; 8(10):2696-2708. PubMed ID: 29774069
    [No Abstract]   [Full Text] [Related]  

  • 17. Addressing the autofluorescence issue in deep tissue imaging by two-photon microscopy: the significance of far-red emitting dyes.
    Jun YW; Kim HR; Reo YJ; Dai M; Ahn KH
    Chem Sci; 2017 Nov; 8(11):7696-7704. PubMed ID: 29568432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive and early diagnosis of acquired brain injury using fluorescence imaging in the NIR-II window.
    Jiang X; Pu R; Wang C; Xu J; Tang Y; Qi S; Zhan Q; Wei X; Gu B
    Biomed Opt Express; 2021 Nov; 12(11):6984-6994. PubMed ID: 34858693
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Horton NG; Wang K; Kobat D; Clark CG; Wise FW; Schaffer CB; Xu C
    Nat Photonics; 2013 Mar; 7(3):205-9. PubMed ID: 24353743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-tissue SWIR imaging using rationally designed small red-shifted near-infrared fluorescent protein.
    Oliinyk OS; Ma C; Pletnev S; Baloban M; Taboada C; Sheng H; Yao J; Verkhusha VV
    Nat Methods; 2023 Jan; 20(1):70-74. PubMed ID: 36456785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.