BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29016106)

  • 1. Characterizations of the Interactions between Escherichia coli Periplasmic Chaperone HdeA and Its Native Substrates during Acid Stress.
    Yu XC; Yang C; Ding J; Niu X; Hu Y; Jin C
    Biochemistry; 2017 Oct; 56(43):5748-5757. PubMed ID: 29016106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale modeling of a conditionally disordered pH-sensing chaperone.
    Ahlstrom LS; Law SM; Dickson A; Brooks CL
    J Mol Biol; 2015 Apr; 427(8):1670-80. PubMed ID: 25584862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escherichia coli HdeB is an acid stress chaperone.
    Kern R; Malki A; Abdallah J; Tagourti J; Richarme G
    J Bacteriol; 2007 Jan; 189(2):603-10. PubMed ID: 17085547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HdeB functions as an acid-protective chaperone in bacteria.
    Dahl JU; Koldewey P; Salmon L; Horowitz S; Bardwell JC; Jakob U
    J Biol Chem; 2015 Jan; 290(1):65-75. PubMed ID: 25391835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of key sites of dimer dissociation and unfolding initiation during activation of acid-stress chaperone HdeA at low pH.
    Widjaja MA; Gomez JS; Benson JM; Crowhurst KA
    Biochim Biophys Acta Proteins Proteom; 2021 Feb; 1869(2):140576. PubMed ID: 33253897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Mechanism of HdeA Unfolding and Chaperone Activation.
    Salmon L; Stull F; Sayle S; Cato C; Akgül Ş; Foit L; Ahlstrom LS; Eisenmesser EZ; Al-Hashimi HM; Bardwell JCA; Horowitz S
    J Mol Biol; 2018 Jan; 430(1):33-40. PubMed ID: 29138002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved amphiphilic feature is essential for periplasmic chaperone HdeA to support acid resistance in enteric bacteria.
    Wu YE; Hong W; Liu C; Zhang L; Chang Z
    Biochem J; 2008 Jun; 412(2):389-97. PubMed ID: 18271752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis and mechanism of the unfolding-induced activation of HdeA, a bacterial acid response chaperone.
    Yu XC; Hu Y; Ding J; Li H; Jin C
    J Biol Chem; 2019 Mar; 294(9):3192-3206. PubMed ID: 30573682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB.
    Malki A; Le HT; Milles S; Kern R; Caldas T; Abdallah J; Richarme G
    J Biol Chem; 2008 May; 283(20):13679-87. PubMed ID: 18359765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditional Chaperone-Client Interactions Revealed by Genetically Encoded Photo-cross-linkers.
    Zhang S; He D; Lin Z; Yang Y; Song H; Chen PR
    Acc Chem Res; 2017 May; 50(5):1184-1192. PubMed ID: 28467057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HdeB chaperone activity is coupled to its intrinsic dynamic properties.
    Ding J; Yang C; Niu X; Hu Y; Jin C
    Sci Rep; 2015 Nov; 5():16856. PubMed ID: 26593705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular mechanism of chaperone-client recognition.
    He L; Sharpe T; Mazur A; Hiller S
    Sci Adv; 2016 Nov; 2(11):e1601625. PubMed ID: 28138538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding.
    Tapley TL; Körner JL; Barge MT; Hupfeld J; Schauerte JA; Gafni A; Jakob U; Bardwell JC
    Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5557-62. PubMed ID: 19321422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation.
    Garrison MA; Crowhurst KA
    Protein Sci; 2014 Feb; 23(2):167-78. PubMed ID: 24375557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding and folding of the small bacterial chaperone HdeA.
    Ahlstrom LS; Dickson A; Brooks CL
    J Phys Chem B; 2013 Oct; 117(42):13219-25. PubMed ID: 23738772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complex role of the N-terminus and acidic residues of HdeA as pH-dependent switches in its chaperone function.
    Pacheco S; Widjaja MA; Gomez JS; Crowhurst KA; Abrol R
    Biophys Chem; 2020 Sep; 264():106406. PubMed ID: 32593908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ¹³C, ¹⁵N and ¹H backbone and side chain chemical shift assignment of acid-stress bacterial chaperone HdeA at pH 6.
    Crowhurst KA
    Biomol NMR Assign; 2014 Oct; 8(2):319-23. PubMed ID: 23835624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the Structure of the Escherichia coli Periplasmic Proteins HdeA and YmgD by Molecular Dynamics Simulations.
    Socher E; Sticht H
    J Phys Chem B; 2016 Nov; 120(46):11845-11855. PubMed ID: 27787971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Chaperone-Active State of HdeB at pH 4 Arises from Its Conformational Rearrangement and Enhanced Stability Instead of Surface Hydrophobicity.
    Thapliyal C; Mishra R
    Biochemistry; 2024 May; 63(9):1147-1161. PubMed ID: 38640496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding mechanisms of periplasmic proteins.
    Goemans C; Denoncin K; Collet JF
    Biochim Biophys Acta; 2014 Aug; 1843(8):1517-28. PubMed ID: 24239929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.