These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 29016362)

  • 1. Compression deformation of WC: atomistic description of hard ceramic material.
    Feng Q; Song X; Liu X; Liang S; Wang H; Nie Z
    Nanotechnology; 2017 Nov; 28(47):475709. PubMed ID: 29016362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Below the Hall-Petch Limit in Nanocrystalline Ceramics.
    Ryou H; Drazin JW; Wahl KJ; Qadri SB; Gorzkowski EP; Feigelson BN; Wollmershauser JA
    ACS Nano; 2018 Apr; 12(4):3083-3094. PubMed ID: 29493218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide.
    Guo D; Song S; Luo R; Goddard WA; Chen M; Reddy KM; An Q
    Phys Rev Lett; 2018 Oct; 121(14):145504. PubMed ID: 30339450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal defects responsible for mechanical behaviors of a WC-Co composite at room and high temperatures - a simulation study.
    Fang J; Liu X; Lu H; Liu X; Song X
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2019 Apr; 75(Pt 2):134-142. PubMed ID: 32830737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic Simulations of Grain Structures and Deformation Behaviors in Nanocrystalline CoCrFeNiMn High-Entropy Alloy.
    Hou J; Li Q; Wu C; Zheng L
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure evolution and the deformation mechanism in nanocrystalline superior-deformed tantalum.
    Li P; Wang A; Qi M; Zhao C; Li Z; Zhanhong W; Koval V; Yan H
    Nanoscale; 2024 Feb; 16(9):4826-4840. PubMed ID: 38312054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grain-Size-Controlled Mechanical Properties of Polycrystalline Monolayer MoS
    Wu J; Cao P; Zhang Z; Ning F; Zheng SS; He J; Zhang Z
    Nano Lett; 2018 Feb; 18(2):1543-1552. PubMed ID: 29390189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dislocation nucleation governed softening and maximum strength in nano-twinned metals.
    Li X; Wei Y; Lu L; Lu K; Gao H
    Nature; 2010 Apr; 464(7290):877-80. PubMed ID: 20376146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monotonic and cyclic plastic deformation behavior of nanocrystalline gold: atomistic simulations.
    Rajput A; Ghosal P; Kumar A; Paul SK
    J Mol Model; 2019 May; 25(6):153. PubMed ID: 31073697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the Soft and Nanoductile Mechanical Nature of Single and Polycrystalline Organic-Inorganic Hybrid Perovskites for Flexible Functional Devices.
    Yu J; Wang M; Lin S
    ACS Nano; 2016 Dec; 10(12):11044-11057. PubMed ID: 27935297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic Representation of Anomalies in the Failure Behaviour of Nanocrystalline Silicene.
    Rakib T; Saha S; Motalab M; Mojumder S; Islam MM
    Sci Rep; 2017 Nov; 7(1):14629. PubMed ID: 29116133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ observation of deformation processes in nanocrystalline face-centered cubic metals.
    Kobler A; Brandl C; Hahn H; Kübel C
    Beilstein J Nanotechnol; 2016; 7():572-80. PubMed ID: 27335747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rediscovering the intrinsic mechanical properties of bulk nanocrystalline indium arsenide.
    Li S; Zhang J; Guan S; Guo R; He D
    Nanoscale; 2023 Apr; 15(16):7517-7525. PubMed ID: 37022013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the deformation behavior and mechanical characteristics of polycrystalline chromium-nickel alloys using molecular dynamics.
    Bui TX; Fang TH; Lee CI
    J Mol Model; 2022 Sep; 28(10):328. PubMed ID: 36138158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and composition dependence of mechanical characteristics of nanoimprinted AlCoCrFeNi high-entropy alloys.
    Doan DQ; Fang TH; Chen TH
    Sci Rep; 2021 Jul; 11(1):13680. PubMed ID: 34211093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grain size-dependent crystal plasticity constitutive model for polycrystal materials.
    Moghaddam MG; Achuthan A; Bednarcyk BA; Arnold SM; Pineda EJ
    Mater Sci Eng A Struct Mater; 2017 Aug; Volume 703():521-532. PubMed ID: 32690982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Hardness and Strength Properties of WC-Co Composites.
    Armstrong RW
    Materials (Basel); 2011 Jul; 4(7):1287-1308. PubMed ID: 28824143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity without dislocations in a polycrystalline intermetallic.
    Luo H; Sheng H; Zhang H; Wang F; Fan J; Du J; Ping Liu J; Szlufarska I
    Nat Commun; 2019 Aug; 10(1):3587. PubMed ID: 31399566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studying Grain Boundary Strengthening by Dislocation-Based Strain Gradient Crystal Plasticity Coupled with a Multi-Phase-Field Model.
    Amin W; Ali MA; Vajragupta N; Hartmaier A
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31540092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A maximum in the strength of nanocrystalline copper.
    Schiøtz J; Jacobsen KW
    Science; 2003 Sep; 301(5638):1357-9. PubMed ID: 12958354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.