These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29016453)

  • 1. IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.
    Zehetner C; Moelgg M; Bechrakis E; Linhart C; Bechrakis NE
    Retina; 2018 Dec; 38(12):2309-2316. PubMed ID: 29016453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of attraction capabilities associated with high-speed, dual-pneumatic vitrectomy probes.
    Dugel PU; Abulon DJ; Dimalanta R
    Retina; 2015 May; 35(5):915-20. PubMed ID: 25621945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cutting phases on flow rate in 20-, 23-, and 25-gauge vitreous cutters.
    Hubschman JP; Bourges JL; Tsui I; Reddy S; Yu F; Schwartz SD
    Retina; 2009 Oct; 29(9):1289-93. PubMed ID: 19730161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance analysis of new-generation vitreous cutters.
    Fang SY; DeBoer CM; Humayun MS
    Graefes Arch Clin Exp Ophthalmol; 2008 Jan; 246(1):61-7. PubMed ID: 17876598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instantaneous flow rate of vitreous cutter probes.
    Rossi T; Querzoli G; Angelini G; Rossi A; Malvasi C; Iossa M; Ripandelli G
    Invest Ophthalmol Vis Sci; 2014 Nov; 55(12):8289-94. PubMed ID: 25414180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid dynamics of vitrectomy probes.
    Rossi T; Querzoli G; Angelini G; Malvasi C; Iossa M; Placentino L; Ripandelli G
    Retina; 2014 Mar; 34(3):558-67. PubMed ID: 24013257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluidics in a dual pneumatic ultra high-speed vitreous cutter system.
    Diniz B; Ribeiro RM; Fernandes RB; Lue JC; Teixeira AG; Maia M; Humayun MS
    Ophthalmologica; 2013; 229(1):15-20. PubMed ID: 23108417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance analysis of ultrahigh-speed vitreous cutter system.
    Ribeiro RM; Teixeira AG; Diniz B; Fernandes RB; Zhong Y; Kerns R; Humayun MS
    Retina; 2013 May; 33(5):928-32. PubMed ID: 23416511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluidics comparison between dual pneumatic and spring return high-speed vitrectomy systems.
    Brant Fernandes RA; Diniz B; Falabella P; Ribeiro R; Teixeira AG; Magalhães O; Moraes N; Maia A; Farah ME; Maia M; Humayun MS
    Ophthalmic Surg Lasers Imaging Retina; 2015 Jan; 46(1):68-72. PubMed ID: 25559512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyses of cutting and aspirating properties of vitreous cutters with high-speed camera.
    Sato T; Kusaka S; Oshima Y; Fujikado T
    Retina; 2008 May; 28(5):749-54. PubMed ID: 18463521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid Dynamic Assessment of Hypersonic and Guillotine Vitrectomy Probes in Viscoelastic Vitreous Substitutes.
    Stocchino A; Nepita I; Repetto R; Dodero A; Castellano M; Ferrara M; Romano MR
    Transl Vis Sci Technol; 2020 May; 9(6):9. PubMed ID: 32821506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Assessment of the Performance of Dual Pneumatic Vitreous Cutters According to Gauge and Cut Rate.
    Lee S; Choi KS
    Korean J Ophthalmol; 2023 Aug; 37(4):307-313. PubMed ID: 37400083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance analysis of a new hypersonic vitrector system.
    Stanga PE; Pastor-Idoate S; Zambrano I; Carlin P; McLeod D
    PLoS One; 2017; 12(6):e0178462. PubMed ID: 28586375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing new vitreous cutter blade shapes: a fluid dynamics study.
    Rossi T; Querzoli G; Angelini G; Malvasi C; Iossa M; Placentino L; Ripandelli G
    Retina; 2014 Sep; 34(9):1896-904. PubMed ID: 24871998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional Cutting (TDC) Vitrectome: In Vitro Flow Assessment and Prospective Clinical Study Evaluating Core Vitrectomy Efficiency versus Standard Vitrectome.
    Pavlidis M
    J Ophthalmol; 2016; 2016():3849316. PubMed ID: 27190635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue attraction associated with 20-gauge, 23-gauge, and enhanced 25-gauge dual-pneumatic vitrectomy probes.
    Dugel PU; Zhou J; Abulon DJ; Buboltz DC
    Retina; 2012 Oct; 32(9):1761-6. PubMed ID: 22466488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 27-gauge instrument system for transconjunctival sutureless microincision vitrectomy surgery.
    Oshima Y; Wakabayashi T; Sato T; Ohji M; Tano Y
    Ophthalmology; 2010 Jan; 117(1):93-102.e2. PubMed ID: 19880185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitreous dynamics: vitreous flow analysis in 20-, 23-, and 25-gauge cutters.
    Magalhaes O; Chong L; DeBoer C; Bhadri P; Kerns R; Barnes A; Fang S; Humayun M
    Retina; 2008 Feb; 28(2):236-41. PubMed ID: 18301028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Port geometry and its influence on vitrectomy.
    DeBoer C; Fang S; Lima LH; McCormick M; Bhadri P; Kerns R; Humayun M
    Retina; 2008 Oct; 28(8):1061-7. PubMed ID: 18779711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EFFECTS OF A MODIFIED VITRECTOMY PROBE IN SMALL-GAUGE VITRECTOMY: An Experimental Study on the Flow and on the Traction Exerted on the Retina.
    Rizzo S; Fantoni G; de Santis G; Lue JL; Ciampi J; Palla M; Genovesi Ebert F; Savastano A; De Maria C; Vozzi G; Brant Fernandes RA; Faraldi F; Criscenti G
    Retina; 2017 Sep; 37(9):1765-1774. PubMed ID: 27930456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.