These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29016625)

  • 1. State-dependent metabolic partitioning and energy conservation: A theoretical framework for understanding the function of sleep.
    Schmidt MH; Swang TW; Hamilton IM; Best JA
    PLoS One; 2017; 12(10):e0185746. PubMed ID: 29016625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The energy allocation function of sleep: a unifying theory of sleep, torpor, and continuous wakefulness.
    Schmidt MH
    Neurosci Biobehav Rev; 2014 Nov; 47():122-53. PubMed ID: 25117535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization.
    Latifi B; Adamantidis A; Bassetti C; Schmidt MH
    Front Neurol; 2018; 9():790. PubMed ID: 30344503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioenergetic functions of sleep and activity rhythms and their possible relevance to aging.
    Berger RJ
    Fed Proc; 1975 Jan; 34(1):97-102. PubMed ID: 162800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suprachiasmatic nucleus in sleep-wake regulation.
    Moore RY
    Sleep Med; 2007 Dec; 8 Suppl 3():27-33. PubMed ID: 18032104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis.
    Sakurai T
    Sleep Med Rev; 2005 Aug; 9(4):231-41. PubMed ID: 15961331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy conservation and sleep.
    Berger RJ; Phillips NH
    Behav Brain Res; 1995; 69(1-2):65-73. PubMed ID: 7546319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative aspects of energy metabolism, body temperature and sleep.
    Berger RJ; Phillips NH
    Acta Physiol Scand Suppl; 1988; 574():21-7. PubMed ID: 3072836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mathematical model of homeostatic regulation of sleep-wake cycles by hypocretin/orexin.
    Postnova S; Voigt K; Braun HA
    J Biol Rhythms; 2009 Dec; 24(6):523-35. PubMed ID: 19926811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback.
    Fuller PM; Gooley JJ; Saper CB
    J Biol Rhythms; 2006 Dec; 21(6):482-93. PubMed ID: 17107938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic rate and body temperature reduction during hibernation and daily torpor.
    Geiser F
    Annu Rev Physiol; 2004; 66():239-74. PubMed ID: 14977403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep and energy balance: Interactive homeostatic systems.
    Vanitallie TB
    Metabolism; 2006 Oct; 55(10 Suppl 2):S30-5. PubMed ID: 16979424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiologically-based modeling of sleep-wake regulatory networks.
    Booth V; Diniz Behn CG
    Math Biosci; 2014 Apr; 250():54-68. PubMed ID: 24530893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The energetic savings of sleep versus temperature in the Desert Iguana (Dipsosaurus dorsalis) at three ecologically relevant temperatures.
    Revell TK; Dunbar SG
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Oct; 148(2):393-8. PubMed ID: 17658283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model-based interpretation of the biphasic daily pattern of sleepiness.
    Nakao M; Nishiyama H; McGinty D; Szymusiak R; Yamamoto M
    Biol Cybern; 1999 Nov; 81(5-6):403-14. PubMed ID: 10592016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative physiology of sleep, thermoregulation and metabolism from the perspective of energy conservation.
    Berger RJ; Phillips NH
    Prog Clin Biol Res; 1990; 345():41-50; discussion 51-2. PubMed ID: 2198600
    [No Abstract]   [Full Text] [Related]  

  • 17. [Mathematical modeling of sleep-wake rhythms].
    Nakao M; Yamamoto M
    Nihon Rinsho; 1998 Feb; 56(2):499-503. PubMed ID: 9503858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system.
    Tsujino N; Sakurai T
    Pharmacol Rev; 2009 Jun; 61(2):162-76. PubMed ID: 19549926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underlying brain mechanisms that regulate sleep-wakefulness cycles.
    Gvilia I
    Int Rev Neurobiol; 2010; 93():1-21. PubMed ID: 20969999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleep as spatiotemporal integration of biological processes that evolved to periodically reinforce neurodynamic and metabolic homeostasis: The 2m3d paradigm of sleep.
    Mader EC; Mader AC
    J Neurol Sci; 2016 Aug; 367():63-80. PubMed ID: 27423566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.