These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29016643)

  • 1. Minimum requirements for motility of a processive motor protein.
    Šarlah A; Vilfan A
    PLoS One; 2017; 12(10):e0185948. PubMed ID: 29016643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation.
    Cho C; Reck-Peterson SL; Vale RD
    J Biol Chem; 2008 Sep; 283(38):25839-45. PubMed ID: 18650442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide-induced transition of GroEL from the high-affinity to the low-affinity state for a target protein: effects of ATP and ADP on the GroEL-affected refolding of alpha-lactalbumin.
    Makio T; Takasu-Ishikawa E; Kuwajima K
    J Mol Biol; 2001 Sep; 312(3):555-67. PubMed ID: 11563916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-dependent interplay between local and global conformational changes in the myosin motor.
    Kiani FA; Fischer S
    Cytoskeleton (Hoboken); 2016 Nov; 73(11):643-651. PubMed ID: 27583666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple models for extracting mechanical work from the ATP hydrolysis cycle.
    Eide JL; Chakraborty AK; Oster GF
    Biophys J; 2006 Jun; 90(12):4281-94. PubMed ID: 16581833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allosteric communication in the dynein motor domain.
    Bhabha G; Cheng HC; Zhang N; Moeller A; Liao M; Speir JA; Cheng Y; Vale RD
    Cell; 2014 Nov; 159(4):857-68. PubMed ID: 25417161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein.
    Kon T; Mogami T; Ohkura R; Nishiura M; Sutoh K
    Nat Struct Mol Biol; 2005 Jun; 12(6):513-9. PubMed ID: 15880123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple theoretical model explains dynein's response to load.
    Gao YQ
    Biophys J; 2006 Feb; 90(3):811-21. PubMed ID: 16284275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural mechanism of the recovery stroke in the myosin molecular motor.
    Fischer S; Windshügel B; Horak D; Holmes KC; Smith JC
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6873-8. PubMed ID: 15863618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-site mechanism for ATP hydrolysis by the asymmetric Rep dimer P2S as revealed by site-specific inhibition with ADP-A1F4.
    Wong I; Lohman TM
    Biochemistry; 1997 Mar; 36(11):3115-25. PubMed ID: 9115987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATPase cycle of an archaeal chaperonin.
    Gutsche I; Mihalache O; Baumeister W
    J Mol Biol; 2000 Jun; 300(1):187-96. PubMed ID: 10864508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress in dynein structure and mechanism.
    Oiwa K; Sakakibara H
    Curr Opin Cell Biol; 2005 Feb; 17(1):98-103. PubMed ID: 15661525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Head-head coordination is required for the processive motion of cytoplasmic dynein, an AAA+ molecular motor.
    Shima T; Imamula K; Kon T; Ohkura R; Sutoh K
    J Struct Biol; 2006 Oct; 156(1):182-9. PubMed ID: 16677823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis.
    Astumian RD; Bier M
    Biophys J; 1996 Feb; 70(2):637-53. PubMed ID: 8789082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switch-1 instability at the active site decouples ATP hydrolysis from force generation in myosin II.
    Walker BC; Walczak CE; Cochran JC
    Cytoskeleton (Hoboken); 2021 Jan; 78(1):3-13. PubMed ID: 33381891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetics of nucleotide-induced DnaK conformational states.
    Taneva SG; Moro F; Velázquez-Campoy A; Muga A
    Biochemistry; 2010 Feb; 49(6):1338-45. PubMed ID: 20078127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites.
    Schlee S; Groemping Y; Herde P; Seidel R; Reinstein J
    J Mol Biol; 2001 Mar; 306(4):889-99. PubMed ID: 11243796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state.
    Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF
    Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Michaelis-Menten at 100 and allosterism at 50: driving molecular motors in a hailstorm with noisy ATPase engines and allosteric transmission.
    Chowdhury D
    FEBS J; 2014 Jan; 281(2):601-11. PubMed ID: 24267408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle.
    Weikl T; Muschler P; Richter K; Veit T; Reinstein J; Buchner J
    J Mol Biol; 2000 Nov; 303(4):583-92. PubMed ID: 11054293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.