BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2901674)

  • 1. Evidence for a peripheral action of thyrotropin releasing hormone on gastrointestinal transit in mice.
    Bansinath M; Bhargava HN
    Neuropharmacology; 1988 Apr; 27(4):433-7. PubMed ID: 2901674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereospecific opiate receptors in the actions of thyrotropin releasing hormone and morphine on gastrointestinal transit.
    Bhargava HN; Pillai NP
    Life Sci; 1985 Jan; 36(1):83-8. PubMed ID: 2981381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of thyrotropin releasing hormone and morphine on gastrointestinal transit.
    Pillai NP; Bhargava HN
    Peptides; 1984; 5(6):1055-9. PubMed ID: 6099556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent central and peripheral mediation of morphine-induced inhibition of gastrointestinal transit in rats.
    Gmerek DE; Cowan A; Woods JH
    J Pharmacol Exp Ther; 1986 Jan; 236(1):8-13. PubMed ID: 3941402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the peripheral and central effects of the opioid agonists loperamide and morphine in the formalin test in rats.
    Shannon HE; Lutz EA
    Neuropharmacology; 2002 Feb; 42(2):253-61. PubMed ID: 11804622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative effects of thyrotropin releasing hormone, MK-771 and DN-1417 on morphine abstinence syndrome.
    Bhargava HN; Matwyshyn GA
    Psychopharmacology (Berl); 1985; 87(2):141-6. PubMed ID: 2996045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in the morphine-induced inhibition of small and large intestinal transit: Involvement of central and peripheral μ-opioid receptors in mice.
    Matsumoto K; Umemoto H; Mori T; Akatsu R; Saito S; Tashima K; Shibasaki M; Kato S; Suzuki T; Horie S
    Eur J Pharmacol; 2016 Jan; 771():220-8. PubMed ID: 26712376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the mechanism of thyrotropin releasing hormone induced inhibition of gastrointestinal transit.
    Bhargava HN; Pillai NP
    Peptides; 1985; 6(2):185-7. PubMed ID: 3929234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of enteric-coated methylnaltrexone in preventing opioid-induced delay in oral-cecal transit time.
    Yuan CS; Foss JF; O'Connor M; Karrison T; Osinski J; Roizen MF; Moss J
    Clin Pharmacol Ther; 2000 Apr; 67(4):398-404. PubMed ID: 10801249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orally administered opioid antagonists reverse both mu and kappa opioid agonist delay of gastrointestinal transit in the guinea pig.
    Culpepper-Morgan JA; Holt PR; LaRoche D; Kreek MJ
    Life Sci; 1995; 56(14):1187-92. PubMed ID: 7475895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of mu-opioid receptors in antinociception and inhibition of gastrointestinal transit induced by 7-hydroxymitragynine, isolated from Thai herbal medicine Mitragyna speciosa.
    Matsumoto K; Hatori Y; Murayama T; Tashima K; Wongseripipatana S; Misawa K; Kitajima M; Takayama H; Horie S
    Eur J Pharmacol; 2006 Nov; 549(1-3):63-70. PubMed ID: 16978601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of diabetes on the morphine-induced inhibition of gastrointestinal transit.
    Kamei J; Ohsawa M; Misawa M; Nagase H; Kasuya Y
    Nihon Shinkei Seishin Yakurigaku Zasshi; 1995 Apr; 15(2):165-9. PubMed ID: 7796321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of tolerance to the inhibitory effect of loperamide on gastrointestinal transit in mice.
    Tan-No K; Niijima F; Nakagawasai O; Sato T; Satoh S; Tadano T
    Eur J Pharm Sci; 2003 Nov; 20(3):357-63. PubMed ID: 14592702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinine-induced inhibition of gastrointestinal transit in mice: possible involvement of endogenous opioids.
    Santos FA; Rao VS
    Eur J Pharmacol; 1999 Jan; 364(2-3):193-7. PubMed ID: 9932723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The safety and efficacy of oral methylnaltrexone in preventing morphine-induced delay in oral-cecal transit time.
    Yuan CS; Foss JF; Osinski J; Toledano A; Roizen MF; Moss J
    Clin Pharmacol Ther; 1997 Apr; 61(4):467-75. PubMed ID: 9129564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative effects of prolyl-leucyl-glycinamide and naloxone on morphine-induced inhibition of gastrointestinal transit.
    Pillai NP; Bhargava HN
    Pharmacol Biochem Behav; 1984 Sep; 21(3):365-8. PubMed ID: 6149566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended-release but not immediate-release and subcutaneous methylnaltrexone antagonizes the loperamide-induced delay of whole-gut transit time in healthy subjects.
    Kolbow J; Modess C; Wegner D; Oswald S; Maritz MA; Rey H; Weitschies W; Siegmund W
    J Clin Pharmacol; 2016 Feb; 56(2):239-45. PubMed ID: 26313157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central vs. peripheral mediation of opioid effects on alcohol consumption in free-feeding rats.
    Linseman MA
    Pharmacol Biochem Behav; 1989 Jun; 33(2):407-13. PubMed ID: 2813479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylnaltrexone prevents morphine-induced delay in oral-cecal transit time without affecting analgesia: a double-blind randomized placebo-controlled trial.
    Yuan CS; Foss JF; O'Connor M; Toledano A; Roizen MF; Moss J
    Clin Pharmacol Ther; 1996 Apr; 59(4):469-75. PubMed ID: 8612393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quaternary narcotic antagonists' relative ability to prevent antinociception and gastrointestinal transit inhibition in morphine-treated rats as an index of peripheral selectivity.
    Bianchi G; Fiocchi R; Tavani A; Manara L
    Life Sci; 1982 May; 30(22):1875-83. PubMed ID: 7109826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.