These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 2901674)
1. Evidence for a peripheral action of thyrotropin releasing hormone on gastrointestinal transit in mice. Bansinath M; Bhargava HN Neuropharmacology; 1988 Apr; 27(4):433-7. PubMed ID: 2901674 [TBL] [Abstract][Full Text] [Related]
2. Stereospecific opiate receptors in the actions of thyrotropin releasing hormone and morphine on gastrointestinal transit. Bhargava HN; Pillai NP Life Sci; 1985 Jan; 36(1):83-8. PubMed ID: 2981381 [TBL] [Abstract][Full Text] [Related]
3. The effect of thyrotropin releasing hormone and morphine on gastrointestinal transit. Pillai NP; Bhargava HN Peptides; 1984; 5(6):1055-9. PubMed ID: 6099556 [TBL] [Abstract][Full Text] [Related]
4. Independent central and peripheral mediation of morphine-induced inhibition of gastrointestinal transit in rats. Gmerek DE; Cowan A; Woods JH J Pharmacol Exp Ther; 1986 Jan; 236(1):8-13. PubMed ID: 3941402 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the peripheral and central effects of the opioid agonists loperamide and morphine in the formalin test in rats. Shannon HE; Lutz EA Neuropharmacology; 2002 Feb; 42(2):253-61. PubMed ID: 11804622 [TBL] [Abstract][Full Text] [Related]
6. Comparative effects of thyrotropin releasing hormone, MK-771 and DN-1417 on morphine abstinence syndrome. Bhargava HN; Matwyshyn GA Psychopharmacology (Berl); 1985; 87(2):141-6. PubMed ID: 2996045 [TBL] [Abstract][Full Text] [Related]
7. Differences in the morphine-induced inhibition of small and large intestinal transit: Involvement of central and peripheral μ-opioid receptors in mice. Matsumoto K; Umemoto H; Mori T; Akatsu R; Saito S; Tashima K; Shibasaki M; Kato S; Suzuki T; Horie S Eur J Pharmacol; 2016 Jan; 771():220-8. PubMed ID: 26712376 [TBL] [Abstract][Full Text] [Related]
8. Studies on the mechanism of thyrotropin releasing hormone induced inhibition of gastrointestinal transit. Bhargava HN; Pillai NP Peptides; 1985; 6(2):185-7. PubMed ID: 3929234 [TBL] [Abstract][Full Text] [Related]
9. Effects of enteric-coated methylnaltrexone in preventing opioid-induced delay in oral-cecal transit time. Yuan CS; Foss JF; O'Connor M; Karrison T; Osinski J; Roizen MF; Moss J Clin Pharmacol Ther; 2000 Apr; 67(4):398-404. PubMed ID: 10801249 [TBL] [Abstract][Full Text] [Related]
10. Orally administered opioid antagonists reverse both mu and kappa opioid agonist delay of gastrointestinal transit in the guinea pig. Culpepper-Morgan JA; Holt PR; LaRoche D; Kreek MJ Life Sci; 1995; 56(14):1187-92. PubMed ID: 7475895 [TBL] [Abstract][Full Text] [Related]
11. Involvement of mu-opioid receptors in antinociception and inhibition of gastrointestinal transit induced by 7-hydroxymitragynine, isolated from Thai herbal medicine Mitragyna speciosa. Matsumoto K; Hatori Y; Murayama T; Tashima K; Wongseripipatana S; Misawa K; Kitajima M; Takayama H; Horie S Eur J Pharmacol; 2006 Nov; 549(1-3):63-70. PubMed ID: 16978601 [TBL] [Abstract][Full Text] [Related]
12. Effect of diabetes on the morphine-induced inhibition of gastrointestinal transit. Kamei J; Ohsawa M; Misawa M; Nagase H; Kasuya Y Nihon Shinkei Seishin Yakurigaku Zasshi; 1995 Apr; 15(2):165-9. PubMed ID: 7796321 [TBL] [Abstract][Full Text] [Related]
13. Development of tolerance to the inhibitory effect of loperamide on gastrointestinal transit in mice. Tan-No K; Niijima F; Nakagawasai O; Sato T; Satoh S; Tadano T Eur J Pharm Sci; 2003 Nov; 20(3):357-63. PubMed ID: 14592702 [TBL] [Abstract][Full Text] [Related]
14. Quinine-induced inhibition of gastrointestinal transit in mice: possible involvement of endogenous opioids. Santos FA; Rao VS Eur J Pharmacol; 1999 Jan; 364(2-3):193-7. PubMed ID: 9932723 [TBL] [Abstract][Full Text] [Related]
15. The safety and efficacy of oral methylnaltrexone in preventing morphine-induced delay in oral-cecal transit time. Yuan CS; Foss JF; Osinski J; Toledano A; Roizen MF; Moss J Clin Pharmacol Ther; 1997 Apr; 61(4):467-75. PubMed ID: 9129564 [TBL] [Abstract][Full Text] [Related]
16. Comparative effects of prolyl-leucyl-glycinamide and naloxone on morphine-induced inhibition of gastrointestinal transit. Pillai NP; Bhargava HN Pharmacol Biochem Behav; 1984 Sep; 21(3):365-8. PubMed ID: 6149566 [TBL] [Abstract][Full Text] [Related]
17. Extended-release but not immediate-release and subcutaneous methylnaltrexone antagonizes the loperamide-induced delay of whole-gut transit time in healthy subjects. Kolbow J; Modess C; Wegner D; Oswald S; Maritz MA; Rey H; Weitschies W; Siegmund W J Clin Pharmacol; 2016 Feb; 56(2):239-45. PubMed ID: 26313157 [TBL] [Abstract][Full Text] [Related]
18. Central vs. peripheral mediation of opioid effects on alcohol consumption in free-feeding rats. Linseman MA Pharmacol Biochem Behav; 1989 Jun; 33(2):407-13. PubMed ID: 2813479 [TBL] [Abstract][Full Text] [Related]
19. Methylnaltrexone prevents morphine-induced delay in oral-cecal transit time without affecting analgesia: a double-blind randomized placebo-controlled trial. Yuan CS; Foss JF; O'Connor M; Toledano A; Roizen MF; Moss J Clin Pharmacol Ther; 1996 Apr; 59(4):469-75. PubMed ID: 8612393 [TBL] [Abstract][Full Text] [Related]
20. Quaternary narcotic antagonists' relative ability to prevent antinociception and gastrointestinal transit inhibition in morphine-treated rats as an index of peripheral selectivity. Bianchi G; Fiocchi R; Tavani A; Manara L Life Sci; 1982 May; 30(22):1875-83. PubMed ID: 7109826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]