These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2901674)

  • 41. Central and peripheral inhibitory effects of morphine on intestinal transit in mice.
    Wong CL
    Methods Find Exp Clin Pharmacol; 1986 Aug; 8(8):479-83. PubMed ID: 3747641
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evidence for the involvement of central opioidergic systems in L-tyrosine methyl ester-induced analgesia in the rat.
    Ramarao P; Bhargava HN
    Pharmacology; 1988; 37(1):1-7. PubMed ID: 3420162
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antidiarrheal and central nervous system activities of SC-27166 (2-[3 - 5 - methyl - 1, 3, 4 - oxadiazol - 2 - yl) - 3, 3 - diphenylpropyl] - 2 - azabicyclo [2.2.2]octane), a new antidiarrheal agent, resulting from binding to opiate receptor sites of brain and myenteric plexus.
    Mackerer CR; Brougham LR; East PF; Bloss JL; Dajani EZ; Clay GA
    J Pharmacol Exp Ther; 1977 Dec; 203(3):527-38. PubMed ID: 200732
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potentiation of cyclo (N-methyl-Tyr-Arg)-induced antinociceptive activity by thyrotropin-releasing hormone in mice.
    Kawamura S; Sakurada S; Sakurada T; Kisara K; Akutsu Y; Sasaki Y; Suzuki K
    J Pharm Pharmacol; 1984 Feb; 36(2):142-4. PubMed ID: 6143808
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of YM-14673, a new TRH analogue, on responses to morphine in rodents.
    Yamamoto M; Shimizu M; Ozawa Y
    Arch Int Pharmacodyn Ther; 1989; 300():29-36. PubMed ID: 2515820
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigation on the relationship between cannabinoid CB1 and opioid receptors in gastrointestinal motility in mice.
    Carai MA; Colombo G; Gessa GL; Yalamanchili R; Basavarajappa BS; Hungund BL
    Br J Pharmacol; 2006 Aug; 148(8):1043-50. PubMed ID: 16847440
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antinociceptive effects of the novel opioid peptide BW443C compared with classical opiates; peripheral versus central actions.
    Follenfant RL; Hardy GW; Lowe LA; Schneider C; Smith TW
    Br J Pharmacol; 1988 Jan; 93(1):85-92. PubMed ID: 3349235
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of some alpha 2-adrenoceptor agonists and antagonists on gastrointestinal transit in mice: influence of morphine, castor oil and glucose.
    Ali BH; Bashir AA
    Clin Exp Pharmacol Physiol; 1993 Jan; 20(1):1-6. PubMed ID: 8094327
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analogs of thyrotropin-releasing hormone in potentiating the spinal monosynaptic reflex in vitro.
    Deshpande SB; Warnick JE
    Eur J Pharmacol; 1994 Dec; 271(2-3):439-44. PubMed ID: 7705444
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antagonism of gut, but not central effects of morphine with quaternary narcotic antagonists.
    Russell J; Bass P; Goldberg LI; Schuster CR; Merz H
    Eur J Pharmacol; 1982 Mar; 78(3):255-61. PubMed ID: 7200037
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The selective mu opioid receptor antagonist, alvimopan, improves delayed GI transit of postoperative ileus in rats.
    Fukuda H; Suenaga K; Tsuchida D; Mantyh CR; Pappas TN; Hicks GA; Dehaven-Hudkins DL; Takahashi T
    Brain Res; 2006 Aug; 1102(1):63-70. PubMed ID: 16797494
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Antinociceptive properties of thyrotropin releasing hormone in mice: comparison with morphine.
    Boschi G; Desiles M; Reny V; Rips R; Wrigglesworth S
    Br J Pharmacol; 1983 May; 79(1):85-92. PubMed ID: 6409194
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of fasting on evaluation of gastrointestinal transit with charcoal meal.
    Mittelstadt SW; Hemenway CL; Spruell RD
    J Pharmacol Toxicol Methods; 2005; 52(1):154-8. PubMed ID: 15963735
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hepatobiliary effects of morphine are mediated in the brain.
    Hurwitz A; Looney G; Sullins M; Ben-Zvi Z
    Hepatology; 1990 Dec; 12(6):1406-12. PubMed ID: 2175293
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Loperamide effects on hepatobiliary function, intestinal transit and analgesia in mice.
    Hurwitz A; Sztern MI; Looney GA; Ben-Zvi Z
    Life Sci; 1994; 54(22):1687-98. PubMed ID: 8177010
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of morphine and liposomal morphine in a model of intestinal inflammation in mice.
    Pol O; Planas E; Puig MM
    Pharmacology; 1996 Sep; 53(3):180-9. PubMed ID: 8931103
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Central muscarinic cholinergic antagonists block wet-dog shakes produced by the TRH analog MK-771 in the rat.
    Sills MA; Mellow AM; Sunderland T; Jacobowitz DM
    Brain Res; 1988 Jun; 453(1-2):385-8. PubMed ID: 3135919
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relative involvement of receptor subtypes in opioid-induced inhibition of intestinal motility in mice.
    Ward SJ; Takemori AE
    Life Sci; 1982 Sep 20-27; 31(12-13):1267-70. PubMed ID: 6128653
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reversal of tolerance to the antitransit effects of morphine during acute intestinal inflammation in mice.
    Pol O; Puig MM
    Br J Pharmacol; 1997 Nov; 122(6):1216-22. PubMed ID: 9401789
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional effects of systemically administered agonists and antagonists of mu, delta, and kappa opioid receptor subtypes on body temperature in mice.
    Baker AK; Meert TF
    J Pharmacol Exp Ther; 2002 Sep; 302(3):1253-64. PubMed ID: 12183687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.