BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29017037)

  • 41. Juggling Lightning: How Chlorella ohadii handles extreme energy inputs without damage.
    Kedem I; Milrad Y; Kaplan A; Yacoby I
    Photosynth Res; 2021 Mar; 147(3):329-344. PubMed ID: 33389446
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Desiccation and radiation stress tolerance in cyanobacteria.
    Singh H
    J Basic Microbiol; 2018 Oct; 58(10):813-826. PubMed ID: 30080267
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria.
    Gutu A; Kehoe DM
    Mol Plant; 2012 Jan; 5(1):1-13. PubMed ID: 21772031
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Response of the artificial cyanobacterial crusts to low temperature and light stress and the micro-structure changes under laboratory conditions].
    Rao BQ; Li H; Xiong Y; Lan SB; Li DH; Liu YD
    Huan Jing Ke Xue; 2012 Aug; 33(8):2793-803. PubMed ID: 23213907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Independence of circadian timing from cell division in cyanobacteria.
    Mori T; Johnson CH
    J Bacteriol; 2001 Apr; 183(8):2439-44. PubMed ID: 11274102
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Desiccation tolerance in bryophytes: The dehydration and rehydration transcriptomes in the desiccation-tolerant bryophyte Bryum argenteum.
    Gao B; Li X; Zhang D; Liang Y; Yang H; Chen M; Zhang Y; Zhang J; Wood AJ
    Sci Rep; 2017 Aug; 7(1):7571. PubMed ID: 28790328
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diel hysteresis between soil respiration and soil temperature in a biological soil crust covered desert ecosystem.
    Guan C; Li X; Zhang P; Chen Y
    PLoS One; 2018; 13(4):e0195606. PubMed ID: 29624606
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diversity of KaiC-based timing systems in marine Cyanobacteria.
    Axmann IM; Hertel S; Wiegard A; Dörrich AK; Wilde A
    Mar Genomics; 2014 Apr; 14():3-16. PubMed ID: 24388874
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of leaf hair points of a desert moss on water retention and dew formation: implications for desiccation tolerance.
    Tao Y; Zhang YM
    J Plant Res; 2012 May; 125(3):351-60. PubMed ID: 22089730
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Light regulation of pigment and photosystem biosynthesis in cyanobacteria.
    Ho MY; Soulier NT; Canniffe DP; Shen G; Bryant DA
    Curr Opin Plant Biol; 2017 Jun; 37():24-33. PubMed ID: 28391049
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterizing the reproductive transcriptomic correlates of acute dehydration in males in the desert-adapted rodent, Peromyscus eremicus.
    Kordonowy L; MacManes M
    BMC Genomics; 2017 Jun; 18(1):473. PubMed ID: 28645248
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gloeocapsopsis AAB1, an extremely desiccation-tolerant cyanobacterium isolated from the Atacama Desert.
    Azua-Bustos A; Zúñiga J; Arenas-Fajardo C; Orellana M; Salas L; Rafael V
    Extremophiles; 2014 Jan; 18(1):61-74. PubMed ID: 24141552
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Nitrogen fixation potential of biological soil crusts in southeast edge of Tengger Desert, Northwest China].
    Zhang P; Li XR; Zhang ZS; Pan YX; Liu YM; Su JQ
    Ying Yong Sheng Tai Xue Bao; 2012 Aug; 23(8):2157-64. PubMed ID: 23189693
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deactivation of photosynthetic activities is triggered by loss of a small amount of water in a desiccation-tolerant cyanobacterium, Nostoc commune.
    Hirai M; Yamakawa R; Nishio J; Yamaji T; Kashino Y; Koike H; Satoh K
    Plant Cell Physiol; 2004 Jul; 45(7):872-8. PubMed ID: 15295070
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proteome analysis of dormancy-released seeds of Fraxinus mandshurica Rupr. in response to re-dehydration under different conditions.
    Zhang P; Liu D; Shen H; Li Y; Nie Y
    Int J Mol Sci; 2015 Mar; 16(3):4713-30. PubMed ID: 25739084
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxidative stress in cyanobacteria.
    Latifi A; Ruiz M; Zhang CC
    FEMS Microbiol Rev; 2009 Mar; 33(2):258-78. PubMed ID: 18834454
    [TBL] [Abstract][Full Text] [Related]  

  • 57. KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria.
    Iwasaki H; Nishiwaki T; Kitayama Y; Nakajima M; Kondo T
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15788-93. PubMed ID: 12391300
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman.
    Abed RM; Al Kharusi S; Schramm A; Robinson MD
    FEMS Microbiol Ecol; 2010 Jun; 72(3):418-28. PubMed ID: 20298501
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Feasibility of EPS-producing bacterial inoculation to speed up the sand aggregation in the Gurbantunggut Desert, Northwestern China.
    Wu N; Pan HX; Qiu D; Zhang YM
    J Basic Microbiol; 2014 Dec; 54(12):1378-86. PubMed ID: 25224518
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcriptional autoregulation by phosphorylated and non-phosphorylated KaiC in cyanobacterial circadian rhythms.
    Takigawa-Imamura H; Mochizuki A
    J Theor Biol; 2006 Jul; 241(2):178-92. PubMed ID: 16387328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.