BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 29017051)

  • 1. Tumor Suppression by p53: Bring in the Hippo!
    Aylon Y; Oren M
    Cancer Cell; 2017 Oct; 32(4):397-399. PubMed ID: 29017051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer.
    Mello SS; Valente LJ; Raj N; Seoane JA; Flowers BM; McClendon J; Bieging-Rolett KT; Lee J; Ivanochko D; Kozak MM; Chang DT; Longacre TA; Koong AC; Arrowsmith CH; Kim SK; Vogel H; Wood LD; Hruban RH; Curtis C; Attardi LD
    Cancer Cell; 2017 Oct; 32(4):460-473.e6. PubMed ID: 29017057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tyrosine phosphatase PTPN14 is a negative regulator of YAP activity.
    Michaloglou C; Lehmann W; Martin T; Delaunay C; Hueber A; Barys L; Niu H; Billy E; Wartmann M; Ito M; Wilson CJ; Digan ME; Bauer A; Voshol H; Christofori G; Sellers WR; Hofmann F; Schmelzle T
    PLoS One; 2013; 8(4):e61916. PubMed ID: 23613971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PTPN14 forms a complex with Kibra and LATS1 proteins and negatively regulates the YAP oncogenic function.
    Wilson KE; Li YW; Yang N; Shen H; Orillion AR; Zhang J
    J Biol Chem; 2014 Aug; 289(34):23693-700. PubMed ID: 25023289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PTPN14 acts as a candidate tumor suppressor in prostate cancer and inhibits cell proliferation and invasion through modulating LATS1/YAP signaling.
    Wang R; Du Y; Shang J; Dang X; Niu G
    Mol Cell Probes; 2020 Oct; 53():101642. PubMed ID: 32645410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PTPN14 interacts with and negatively regulates the oncogenic function of YAP.
    Liu X; Yang N; Figel SA; Wilson KE; Morrison CD; Gelman IH; Zhang J
    Oncogene; 2013 Mar; 32(10):1266-73. PubMed ID: 22525271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p53 shades of Hippo.
    Furth N; Aylon Y; Oren M
    Cell Death Differ; 2018 Jan; 25(1):81-92. PubMed ID: 28984872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuregulin 1-activated ERBB4 as a "dedicated" receptor for the Hippo-YAP pathway.
    Sudol M
    Sci Signal; 2014 Dec; 7(355):pe29. PubMed ID: 25492964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Hippo pathway, p53 and cholesterol.
    Aylon Y; Oren M
    Cell Cycle; 2016 Sep; 15(17):2248-55. PubMed ID: 27419353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tyrosine phosphatase PTPN14 (Pez) inhibits metastasis by altering protein trafficking.
    Belle L; Ali N; Lonic A; Li X; Paltridge JL; Roslan S; Herrmann D; Conway JR; Gehling FK; Bert AG; Crocker LA; Tsykin A; Farshid G; Goodall GJ; Timpson P; Daly RJ; Khew-Goodall Y
    Sci Signal; 2015 Feb; 8(364):ra18. PubMed ID: 25690013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properly dividing with YAP.
    Pfeifer GP
    Sci Signal; 2016 Mar; 9(417):fs3. PubMed ID: 26933061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of BAP1 Leads to More YAPing in Pancreatic Cancer.
    Brekken RA
    Cancer Res; 2020 Apr; 80(8):1624-1625. PubMed ID: 32295782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncoupling of the Hippo and Rho pathways allows megakaryocytes to escape the tetraploid checkpoint.
    Roy A; Lordier L; Pioche-Durieu C; Souquere S; Roy L; Rameau P; Lapierre V; Le Cam E; Plo I; Debili N; Raslova H; Vainchenker W
    Haematologica; 2016 Dec; 101(12):1469-1478. PubMed ID: 27515249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stiehopus japonieus acidic mucopolysaccharide inhibits the proliferation of pancreatic cancer SW1990 cells through Hippo-YAP pathway.
    Li X; Liu Y; Zhang C; Niu Q; Wang H; Che C; Xie M; Zhou B; Xu Y; Zhang Q; Wu J; Tian Z
    Oncotarget; 2017 Mar; 8(10):16356-16366. PubMed ID: 28099921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Hippo-p53 pathway in megakaryopoiesis.
    Suraneni PK; Crispino JD
    Haematologica; 2016 Dec; 101(12):1446-1448. PubMed ID: 27903710
    [No Abstract]   [Full Text] [Related]  

  • 16. Cancer: a new role for non-canonical Hippo signaling.
    Cooper J; Giancotti FG
    Cell Res; 2017 Apr; 27(4):459-460. PubMed ID: 28244491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changing the Rules of the Game: How Winners Become Losers during Oncogenic Cell Selection.
    Villa Del Campo C; Torres M
    Cell Stem Cell; 2019 Sep; 25(3):299-300. PubMed ID: 31491391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NSUN2/p53 signaling axis: A potential mechanism for treating aging-associated heart diseases.
    Fan ZX; Yang J
    Int J Cardiol; 2022 Jul; 359():114. PubMed ID: 35398236
    [No Abstract]   [Full Text] [Related]  

  • 19. Meet the authors: Jianong Zhang and Haojie Huang.
    Zhang J; Huang H
    Mol Cell; 2023 Aug; 83(15):2613-2615. PubMed ID: 37541215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piquing our interest: Insights into the role of PEAK3 in signaling and disease.
    Paul MD; Torosyan H; Jura N
    Sci Signal; 2022 Feb; 15(722):eabm9396. PubMed ID: 35192418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.