BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29017101)

  • 1. Facile synthesis of novel calcined magnetic orange peel composites for efficient removal of arsenite through simultaneous oxidation and adsorption.
    Shehzad K; Xie C; He J; Cai X; Xu W; Liu J
    J Colloid Interface Sci; 2018 Feb; 511():155-164. PubMed ID: 29017101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies.
    Pandiarajan A; Kamaraj R; Vasudevan S; Vasudevan S
    Bioresour Technol; 2018 Aug; 261():329-341. PubMed ID: 29677661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal.
    Zhang G; Qu J; Liu H; Liu R; Wu R
    Water Res; 2007 May; 41(9):1921-8. PubMed ID: 17382991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of Cu2+ and Cd2+ from aqueous solution by mercapto-acetic acid modified orange peel.
    Liang S; Guo X; Feng N; Tian Q
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):10-4. PubMed ID: 19477102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorptive removal of As(V) and As(III) from water by a Zr(IV)-loaded orange waste gel.
    Biswas BK; Inoue J; Inoue K; Ghimire KN; Harada H; Ohto K; Kawakita H
    J Hazard Mater; 2008 Jun; 154(1-3):1066-74. PubMed ID: 18093733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption.
    Yu L; Peng X; Ni F; Li J; Wang D; Luan Z
    J Hazard Mater; 2013 Feb; 246-247():10-7. PubMed ID: 23276789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous oxidation and adsorption of As(III) from water by cerium modified chitosan ultrafine nanobiosorbent.
    Zhang L; Zhu T; Liu X; Zhang W
    J Hazard Mater; 2016 May; 308():1-10. PubMed ID: 26808237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium and thermodynamic studies of Cd (II) biosorption by chemically modified orange peel.
    Kumar A; Kumar V
    J Environ Biol; 2016 Mar; 37(2):201-6. PubMed ID: 27097438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of orange peel xanthate for the adsorption of Pb2+ from aqueous solutions.
    Liang S; Guo X; Feng N; Tian Q
    J Hazard Mater; 2009 Oct; 170(1):425-9. PubMed ID: 19473765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced removal of arsenite and arsenate by a multifunctional Fe-Ti-Mn composite oxide: Photooxidation, oxidation and adsorption.
    Zhang W; Zhang G; Liu C; Li J; Zheng T; Ma J; Wang L; Jiang J; Zhai X
    Water Res; 2018 Dec; 147():264-275. PubMed ID: 30315994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar.
    Tran HN; You SJ; Chao HP
    Waste Manag Res; 2016 Feb; 34(2):129-38. PubMed ID: 26608900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+ from aqueous solutions by Mg2+/K+ type orange peel adsorbents.
    Liang S; Guo X; Feng N; Tian Q
    J Hazard Mater; 2010 Feb; 174(1-3):756-62. PubMed ID: 19853995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifunctional resin-ZVI composites for effective removal of arsenite through simultaneous adsorption and oxidation.
    Du Q; Zhang S; Pan B; Lv L; Zhang W; Zhang Q
    Water Res; 2013 Oct; 47(16):6064-74. PubMed ID: 23969401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perchlorate adsorption onto orange peel modified by cross-linking amine groups from aqueous solutions.
    Zhang L; Yang Z; Li T; Zhou S; Wu Z
    Water Sci Technol; 2015; 71(11):1629-37. PubMed ID: 26038927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cr(III) and Cr(VI) removal from aqueous solutions by cheaply available fruit waste and algal biomass.
    Pakshirajan K; Worku AN; Acheampong MA; Lubberding HJ; Lens PN
    Appl Biochem Biotechnol; 2013 Jun; 170(3):498-513. PubMed ID: 23553106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and Theoretical Insights on Methylene Blue Removal from Wastewater Using an Adsorbent Obtained from the Residues of the Orange Industry.
    Giraldo S; Robles I; Godínez LA; Acelas N; Flórez E
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of arsenite from aqueous solutions by anionic clays.
    You YW; Zhao HT; Vance GF
    Environ Technol; 2001 Dec; 22(12):1447-57. PubMed ID: 11873880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparison of the adsorption of arsenite and arsenate anions from aqueous solution by calcined Mg-Al layered double hydroxides].
    Xing K; Wang HZ; Li XY
    Huan Jing Ke Xue; 2009 Mar; 30(3):748-54. PubMed ID: 19432322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide.
    Shan C; Tong M
    Water Res; 2013 Jun; 47(10):3411-21. PubMed ID: 23587265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel.
    Nemr AE; Abdelwahab O; El-Sikaily A; Khaled A
    J Hazard Mater; 2009 Jan; 161(1):102-10. PubMed ID: 18455301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.