These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 29017361)

  • 1. Haptic-assistive technologies for audition and vision sensory disabilities.
    Sorgini F; Caliò R; Carrozza MC; Oddo CM
    Disabil Rehabil Assist Technol; 2018 May; 13(4):394-421. PubMed ID: 29017361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing Haptic Assistive Technology for Individuals Who Are Blind or Visually Impaired.
    Pawluk DT; Adams RJ; Kitada R
    IEEE Trans Haptics; 2015; 8(3):258-78. PubMed ID: 26336151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Developments in Haptic Devices Designed for Hearing-Impaired People: A Literature Review.
    Flores Ramones A; Del-Rio-Guerra MS
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of an Audio-haptic Sensory Substitution Device for Enhancing Spatial Awareness for the Visually Impaired.
    Hoffmann R; Spagnol S; Kristjánsson Á; Unnthorsson R
    Optom Vis Sci; 2018 Sep; 95(9):757-765. PubMed ID: 30153241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobile assistive technologies for the visually impaired.
    Hakobyan L; Lumsden J; O'Sullivan D; Bartlett H
    Surv Ophthalmol; 2013; 58(6):513-28. PubMed ID: 24054999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Device abandonment in deafblindness: a scoping review of the intersection of functionality and usability through the International Classification of Functioning, Disability and Health lens.
    Wittich W; Granberg S; Wahlqvist M; Pichora-Fuller MK; Mäki-Torkko E
    BMJ Open; 2021 Jan; 11(1):e044873. PubMed ID: 33495263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guest Editorial: Haptic Assistive Technology for Individuals who are Visually Impaired.
    Pawluk D; Bourbakis N; Giudice N; Hayward V; Heller M
    IEEE Trans Haptics; 2015; 8(3):245-7. PubMed ID: 26649374
    [No Abstract]   [Full Text] [Related]  

  • 8. A Self Assistive Device for Deaf & Blind People Using IOT : Kathu-Kann Thaan Thunai Eyanthiram.
    Vasanth K ; Macharla M; Varatharajan R
    J Med Syst; 2019 Mar; 43(4):88. PubMed ID: 30820679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assistive device using computer vision and image processing for visually impaired; review and current status.
    Patel K; Parmar B
    Disabil Rehabil Assist Technol; 2022 Apr; 17(3):290-297. PubMed ID: 32608288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Audibility of Low Vision Devices with Speech Output Used by Older Adults with Dual Sensory Impairment.
    St-Amour L; Jarry J; Wittich W
    Optom Vis Sci; 2019 May; 96(5):345-353. PubMed ID: 31046017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing of speech signals for physical and sensory disabilities.
    Levitt H
    Proc Natl Acad Sci U S A; 1995 Oct; 92(22):9999-10006. PubMed ID: 7479816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assistive obstacle detection and navigation devices for vision-impaired users.
    Ong SK; Zhang J; Nee AY
    Disabil Rehabil Assist Technol; 2013 Sep; 8(5):409-16. PubMed ID: 23350879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of principles in design and usability testing of tactile technology for individuals with visual impairments.
    Horton EL; Renganathan R; Toth BN; Cohen AJ; Bajcsy AV; Bateman A; Jennings MC; Khattar A; Kuo RS; Lee FA; Lim MK; Migasiuk LW; Zhang A; Zhao OK; Oliveira MA
    Assist Technol; 2017; 29(1):28-36. PubMed ID: 27187665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expounding the rehabilitation service for acquired visual impairment contingent on assistive technology acceptance.
    Kan CR; Wang CY
    Disabil Rehabil Assist Technol; 2021 Jul; 16(5):520-524. PubMed ID: 32363954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Range sensor-based assistive technology solutions for people with visual impairment: a review.
    Manzoor S; Iftikhar S; Ayub I; Shahid A; Haq AU; Muhammad W; Shafique M
    Disabil Rehabil Assist Technol; 2024 Apr; 19(3):576-584. PubMed ID: 36036390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Cognitive remediation and cognitive assistive technologies in schizophrenia].
    Sablier J; Stip E; Franck N
    Encephale; 2009 Apr; 35(2):160-7. PubMed ID: 19393385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrotactile and vibrotactile displays for sensory substitution systems.
    Kaczmarek KA; Webster JG; Bach-y-Rita P; Tompkins WJ
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):1-16. PubMed ID: 2026426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multisensory inclusive design with sensory substitution.
    Lloyd-Esenkaya T; Lloyd-Esenkaya V; O'Neill E; Proulx MJ
    Cogn Res Princ Implic; 2020 Aug; 5(1):37. PubMed ID: 32770416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A self-training program for sensory substitution devices.
    Buchs G; Haimler B; Kerem M; Maidenbaum S; Braun L; Amedi A
    PLoS One; 2021; 16(4):e0250281. PubMed ID: 33905446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Audio-Tactile Rendering: A Review on Technology and Methods to Convey Musical Information through the Sense of Touch.
    Remache-Vinueza B; Trujillo-León A; Zapata M; Sarmiento-Ortiz F; Vidal-Verdú F
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.