These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 29017767)
1. Inducible NAD(H)-linked methylglyoxal oxidoreductase regulates cellular methylglyoxal and pyruvate through enhanced activities of alcohol dehydrogenase and methylglyoxal-oxidizing enzymes in glutathione-depleted Candida albicans. Kwak MK; Ku M; Kang SO Biochim Biophys Acta Gen Subj; 2018 Jan; 1862(1):18-39. PubMed ID: 29017767 [TBL] [Abstract][Full Text] [Related]
3. Methylglyoxal-Scavenging Enzyme Activities Trigger Erythroascorbate Peroxidase and Cytochrome c Peroxidase in Glutathione-Depleted Kang SO; Kwak MK J Microbiol Biotechnol; 2021 Jan; 31(1):79-91. PubMed ID: 33203822 [TBL] [Abstract][Full Text] [Related]
4. Cytochrome c peroxidase regulates intracellular reactive oxygen species and methylglyoxal via enzyme activities of erythroascorbate peroxidase and glutathione-related enzymes in Candida albicans. Shin Y; Lee S; Ku M; Kwak MK; Kang SO Int J Biochem Cell Biol; 2017 Nov; 92():183-201. PubMed ID: 29031807 [TBL] [Abstract][Full Text] [Related]
5. NAD(+)-linked alcohol dehydrogenase 1 regulates methylglyoxal concentration in Candida albicans. Kwak MK; Ku M; Kang SO FEBS Lett; 2014 Apr; 588(7):1144-53. PubMed ID: 24607541 [TBL] [Abstract][Full Text] [Related]
6. Candida albicans glutathione reductase downregulates Efg1-mediated cyclic AMP/protein kinase A pathway and leads to defective hyphal growth and virulence upon decreased cellular methylglyoxal content accompanied by activating alcohol dehydrogenase and glycolytic enzymes. Ku M; Baek YU; Kwak MK; Kang SO Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):772-788. PubMed ID: 27751952 [TBL] [Abstract][Full Text] [Related]
7. Fermentative 2-carbon metabolism produces carcinogenic levels of acetaldehyde in Candida albicans. Marttila E; Bowyer P; Sanglard D; Uittamo J; Kaihovaara P; Salaspuro M; Richardson M; Rautemaa R Mol Oral Microbiol; 2013 Aug; 28(4):281-91. PubMed ID: 23445445 [TBL] [Abstract][Full Text] [Related]
8. ADH1 promotes Candida albicans pathogenicity by stimulating oxidative phosphorylation. Song Y; Li S; Zhao Y; Zhang Y; Lv Y; Jiang Y; Wang Y; Li D; Zhang H Int J Med Microbiol; 2019 Sep; 309(6):151330. PubMed ID: 31471070 [TBL] [Abstract][Full Text] [Related]
9. Featured Article: Pyruvate preserves antiglycation defenses in porcine brain after cardiac arrest. Scott GF; Nguyen AQ; Cherry BH; Hollrah RA; Salinas I; Williams AG; Ryou MG; Mallet RT Exp Biol Med (Maywood); 2017 May; 242(10):1095-1103. PubMed ID: 28361585 [TBL] [Abstract][Full Text] [Related]
10. Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans. Guedouari H; Gergondey R; Bourdais A; Vanparis O; Bulteau AL; Camadro JM; Auchère F Biochim Biophys Acta; 2014 Sep; 1842(9):1855-69. PubMed ID: 25018088 [TBL] [Abstract][Full Text] [Related]
11. A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans. Hasim S; Hussin NA; Alomar F; Bidasee KR; Nickerson KW; Wilson MA J Biol Chem; 2014 Jan; 289(3):1662-74. PubMed ID: 24302734 [TBL] [Abstract][Full Text] [Related]
12. Mrr1 regulation of methylglyoxal catabolism and methylglyoxal-induced fluconazole resistance in Candida lusitaniae. Biermann AR; Demers EG; Hogan DA Mol Microbiol; 2021 Jan; 115(1):116-130. PubMed ID: 33319423 [TBL] [Abstract][Full Text] [Related]
13. Structure and regulation of the Candida albicans ADH1 gene encoding an immunogenic alcohol dehydrogenase. Bertram G; Swoboda RK; Gooday GW; Gow NA; Brown AJ Yeast; 1996 Feb; 12(2):115-27. PubMed ID: 8686375 [TBL] [Abstract][Full Text] [Related]
14. Candida albicans erythroascorbate peroxidase regulates intracellular methylglyoxal and reactive oxygen species independently of D-erythroascorbic acid. Kwak MK; Song SH; Ku M; Kang SO FEBS Lett; 2015 Jul; 589(15):1863-71. PubMed ID: 25957768 [TBL] [Abstract][Full Text] [Related]
15. 2-Oxoaldehyde metabolism in microorganisms. Murata K; Inoue Y; Rhee H; Kimura A Can J Microbiol; 1989 Apr; 35(4):423-31. PubMed ID: 2663129 [TBL] [Abstract][Full Text] [Related]
16. Alcohol dehydrogenase I expression correlates with CDR1, CDR2 and FLU1 expression in Candida albicans from patients with vulvovaginal candidiasis. Guo H; Zhang XL; Gao LQ; Li SX; Song YJ; Zhang H Chin Med J (Engl); 2013; 126(11):2098-102. PubMed ID: 23769565 [TBL] [Abstract][Full Text] [Related]
17. Methylglyoxal upregulates Dictyostelium discoideum slug migration by triggering glutathione reductase and methylglyoxal reductase activity. Lee HM; Seo JH; Kwak MK; Kang SO Int J Biochem Cell Biol; 2017 Sep; 90():81-92. PubMed ID: 28760625 [TBL] [Abstract][Full Text] [Related]
18. Comparative activities of glycolytic enzymes in yeast and mycelial forms of Candida albicans. Schwartz DS; Larsh HW Mycopathologia; 1982 May; 78(2):93-8. PubMed ID: 6212766 [TBL] [Abstract][Full Text] [Related]
19. Reduction of methylglyoxal in Escherichia coli K12 by an aldehyde reductase and alcohol dehydrogenase. Misra K; Banerjee AB; Ray S; Ray M Mol Cell Biochem; 1996 Mar; 156(2):117-24. PubMed ID: 9095467 [TBL] [Abstract][Full Text] [Related]
20. In vitro expression of Candida albicans alcohol dehydrogenase genes involved in acetaldehyde metabolism. Bakri MM; Rich AM; Cannon RD; Holmes AR Mol Oral Microbiol; 2015 Feb; 30(1):27-38. PubMed ID: 24975985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]