These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29017866)

  • 61. Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography.
    Fan C; Yao G
    Biomed Opt Express; 2013 Mar; 4(3):460-5. PubMed ID: 23504508
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ptychographic optical coherence tomography.
    Du M; Loetgering L; Eikema KSE; Witte S
    Opt Lett; 2021 Mar; 46(6):1337-1340. PubMed ID: 33720181
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Slope-based segmentation of articular cartilage using polarization-sensitive optical coherence tomography phase retardation image.
    Zhou X; Ju MJ; Huang L; Tang S
    J Biomed Opt; 2019 Mar; 24(3):1-14. PubMed ID: 30873765
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Quantifying three-dimensional optic axis using polarization-sensitive optical coherence tomography.
    Liu CJ; Black AJ; Wang H; Akkin T
    J Biomed Opt; 2016 Jul; 21(7):70501. PubMed ID: 27387702
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Lagged covariance structure models for studying functional connectivity in the brain.
    Rykhlevskaia E; Fabiani M; Gratton G
    Neuroimage; 2006 May; 30(4):1203-18. PubMed ID: 16414282
    [TBL] [Abstract][Full Text] [Related]  

  • 66. 3D quantitative synthetic MRI-derived cortical thickness and subcortical brain volumes: Scan-rescan repeatability and comparison with conventional T
    Fujita S; Hagiwara A; Hori M; Warntjes M; Kamagata K; Fukunaga I; Goto M; Takuya H; Takasu K; Andica C; Maekawa T; Takemura MY; Irie R; Wada A; Suzuki M; Aoki S
    J Magn Reson Imaging; 2019 Dec; 50(6):1834-1842. PubMed ID: 30968991
    [TBL] [Abstract][Full Text] [Related]  

  • 67. ScaleS: an optical clearing palette for biological imaging.
    Hama H; Hioki H; Namiki K; Hoshida T; Kurokawa H; Ishidate F; Kaneko T; Akagi T; Saito T; Saido T; Miyawaki A
    Nat Neurosci; 2015 Oct; 18(10):1518-29. PubMed ID: 26368944
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Online monitoring of collagen fibre alignment in tissue-engineered tendon by PSOCT.
    Ahearne M; Bagnaninchi PO; Yang Y; El Haj AJ
    J Tissue Eng Regen Med; 2008 Dec; 2(8):521-4. PubMed ID: 18956413
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Polarization sensitive optical coherence tomography with single input for imaging depth-resolved collagen organizations.
    Tang P; Kirby MA; Le N; Li Y; Zeinstra N; Lu GN; Murry CE; Zheng Y; Wang RK
    Light Sci Appl; 2021 Nov; 10(1):237. PubMed ID: 34819490
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Real Time Gabor-Domain Optical Coherence Microscopy for 3D Imaging.
    Rolland JP; Canavesi C; Tankam P; Cogliati A; Lanis M; Santhanam AP
    Stud Health Technol Inform; 2016; 220():335-40. PubMed ID: 27046601
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Polarization effect on the depth resolution of optical coherence tomography.
    Jiao S; Ruggeri M
    J Biomed Opt; 2008; 13(6):060503. PubMed ID: 19123644
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In vivo tissue injury mapping using optical coherence tomography based methods.
    Baran U; Li Y; Wang RK
    Appl Opt; 2015 Jul; 54(21):6448-53. PubMed ID: 26367827
    [TBL] [Abstract][Full Text] [Related]  

  • 73. White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability.
    Bürgel U; Amunts K; Hoemke L; Mohlberg H; Gilsbach JM; Zilles K
    Neuroimage; 2006 Feb; 29(4):1092-105. PubMed ID: 16236527
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In vivo early detection of smoke-induced airway injury using three-dimensional swept-source optical coherence tomography.
    Yin J; Liu G; Zhang J; Yu L; Mahon S; Mukai D; Brenner M; Chen Z
    J Biomed Opt; 2009; 14(6):060503. PubMed ID: 20059234
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Distribution and orientation of nerve fibers and myelin assembly in a brain section retrieved by small-angle neutron scattering.
    Maiti S; Frielinghaus H; Gräßel D; Dulle M; Axer M; Förster S
    Sci Rep; 2021 Aug; 11(1):17306. PubMed ID: 34453063
    [TBL] [Abstract][Full Text] [Related]  

  • 76. High-resolution 3D tractography of fibrous tissue based on polarization-sensitive optical coherence tomography.
    Yao G; Duan D
    Exp Biol Med (Maywood); 2020 Feb; 245(4):273-281. PubMed ID: 31813275
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multiscale label-free imaging of myelin in human brain tissue with polarization-sensitive optical coherence tomography and birefringence microscopy.
    Blanke N; Chang S; Novoseltseva A; Wang H; Boas DA; Bigio IJ
    Biomed Opt Express; 2023 Nov; 14(11):5946-5964. PubMed ID: 38021128
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In Vivo 3D Determination of Peripapillary Scleral and Retinal Layer Architecture Using Polarization-Sensitive Optical Coherence Tomography.
    Willemse J; Gräfe MGO; Verbraak FD; de Boer JF
    Transl Vis Sci Technol; 2020 Oct; 9(11):21. PubMed ID: 33150047
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Acousto-optical tunable filter for combined wideband, spectral, and optical coherence microscopy.
    Machikhin AS; Pozhar VE; Viskovatykh AV; Burmak LI
    Appl Opt; 2015 Sep; 54(25):7508-13. PubMed ID: 26368870
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain.
    Dodt HU; Leischner U; Schierloh A; Jährling N; Mauch CP; Deininger K; Deussing JM; Eder M; Zieglgänsberger W; Becker K
    Nat Methods; 2007 Apr; 4(4):331-6. PubMed ID: 17384643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.