BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29018037)

  • 1. Chromatin remodeler CHD1 promotes XPC-to-TFIIH handover of nucleosomal UV lesions in nucleotide excision repair.
    Rüthemann P; Balbo Pogliano C; Codilupi T; Garajovà Z; Naegeli H
    EMBO J; 2017 Nov; 36(22):3372-3386. PubMed ID: 29018037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosomal protein S3 associates with the TFIIH complex and positively regulates nucleotide excision repair.
    Park YJ; Kim SH; Kim TS; Lee SM; Cho BS; Seo CI; Kim HD; Kim J
    Cell Mol Life Sci; 2021 Apr; 78(7):3591-3606. PubMed ID: 33464383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A disease-associated XPA allele interferes with TFIIH binding and primarily affects transcription-coupled nucleotide excision repair.
    van den Heuvel D; Kim M; Wondergem AP; van der Meer PJ; Witkamp M; Lambregtse F; Kim HS; Kan F; Apelt K; Kragten A; González-Prieto R; Vertegaal ACO; Yeo JE; Kim BG; van Doorn R; Schärer OD; Luijsterburg MS
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2208860120. PubMed ID: 36893274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of Transcription Factor IIH complex in nucleotide excision repair.
    Hoag A; Duan M; Mao P
    Environ Mol Mutagen; 2024 Apr; 65 Suppl 1(Suppl 1):72-81. PubMed ID: 37545038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced dna damage depends on functional TFIIH.
    Zotter A; Luijsterburg MS; Warmerdam DO; Ibrahim S; Nigg A; van Cappellen WA; Hoeijmakers JH; van Driel R; Vermeulen W; Houtsmuller AB
    Mol Cell Biol; 2006 Dec; 26(23):8868-79. PubMed ID: 17000769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin remodeling facilitates DNA incision in UV-damaged nucleosomes.
    Lee K; Kim DR; Ahn B
    Mol Cells; 2004 Aug; 18(1):100-6. PubMed ID: 15359130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A human XPC protein interactome--a resource.
    Lubin A; Zhang L; Chen H; White VM; Gong F
    Int J Mol Sci; 2013 Dec; 15(1):141-58. PubMed ID: 24366067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xeroderma Pigmentosum: Gene Variants and Splice Variants.
    Martens MC; Emmert S; Boeckmann L
    Genes (Basel); 2021 Jul; 12(8):. PubMed ID: 34440347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular anatomy of the human excision nuclease assembled at sites of DNA damage.
    Reardon JT; Sancar A
    Mol Cell Biol; 2002 Aug; 22(16):5938-45. PubMed ID: 12138203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementary roles of yeast Rad4p and Rad34p in nucleotide excision repair of active and inactive rRNA gene chromatin.
    Tremblay M; Teng Y; Paquette M; Waters R; Conconi A
    Mol Cell Biol; 2008 Dec; 28(24):7504-13. PubMed ID: 18936173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaperones for dancing on chromatin: Role of post-translational modifications in dynamic damage detection hand-offs during nucleotide excision repair.
    Van Houten B; Schnable B; Kumar N
    Bioessays; 2021 May; 43(5):e2100011. PubMed ID: 33620094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the chromodomain helicase DNA-binding protein 1 (Chd1) DNA-binding domain in complex with DNA.
    Sharma A; Jenkins KR; Héroux A; Bowman GD
    J Biol Chem; 2011 Dec; 286(49):42099-42104. PubMed ID: 22033927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super hotspots and super coldspots in the repair of UV-induced DNA damage in the human genome.
    Jiang Y; Li W; Lindsey-Boltz LA; Yang Y; Li Y; Sancar A
    J Biol Chem; 2021; 296():100581. PubMed ID: 33771559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differing structures and dynamics of two photolesions portray verification differences by the human XPD helicase.
    Fu I; Geacintov NE; Broyde S
    Nucleic Acids Res; 2023 Dec; 51(22):12261-12274. PubMed ID: 37933861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Participation of chromatin-remodeling proteins in the repair of ultraviolet-B-damaged DNA.
    Campi M; D'Andrea L; Emiliani J; Casati P
    Plant Physiol; 2012 Feb; 158(2):981-95. PubMed ID: 22170978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chd1 protects genome integrity at promoters to sustain hypertranscription in embryonic stem cells.
    Bulut-Karslioglu A; Jin H; Kim YK; Cho B; Guzman-Ayala M; Williamson AJK; Hejna M; Stötzel M; Whetton AD; Song JS; Ramalho-Santos M
    Nat Commun; 2021 Aug; 12(1):4859. PubMed ID: 34381042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sentinels of chromatin: chromodomain helicase DNA-binding proteins in development and disease.
    Alendar A; Berns A
    Genes Dev; 2021 Nov; 35(21-22):1403-1430. PubMed ID: 34725129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage.
    Rubbi CP; Milner J
    EMBO J; 2003 Feb; 22(4):975-86. PubMed ID: 12574133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV damage induces production of mitochondrial DNA fragments with specific length profiles.
    Waneka G; Stewart J; Anderson JR; Li W; Wilusz J; Argueso JL; Sloan DB
    Genetics; 2024 May; ():. PubMed ID: 38722894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV damage induces production of mitochondrial DNA fragments with specific length profiles.
    Waneka G; Stewart J; Anderson JR; Li W; Wilusz J; Argueso JL; Sloan DB
    bioRxiv; 2023 Nov; ():. PubMed ID: 37986892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.