These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 29018190)

  • 1. Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors.
    Cho KS; Heo K; Baik CW; Choi JY; Jeong H; Hwang S; Lee SY
    Nat Commun; 2017 Oct; 8(1):840. PubMed ID: 29018190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors.
    Ni Z; Ma L; Du S; Xu Y; Yuan M; Fang H; Wang Z; Xu M; Li D; Yang J; Hu W; Pi X; Yang D
    ACS Nano; 2017 Oct; 11(10):9854-9862. PubMed ID: 28921944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A skin-like two-dimensionally pixelized full-color quantum dot photodetector.
    Kim J; Kwon SM; Kang YK; Kim YH; Lee MJ; Han K; Facchetti A; Kim MG; Park SK
    Sci Adv; 2019 Nov; 5(11):eaax8801. PubMed ID: 31803836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoS
    Huo N; Gupta S; Konstantatos G
    Adv Mater; 2017 May; 29(17):. PubMed ID: 28247438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertically Stacked Full Color Quantum Dots Phototransistor Arrays for High-Resolution and Enhanced Color-Selective Imaging.
    Kim J; Jo C; Kim MG; Park GS; Marks TJ; Facchetti A; Park SK
    Adv Mater; 2022 Jan; 34(2):e2106215. PubMed ID: 34632653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid graphene-quantum dot phototransistors with ultrahigh gain.
    Konstantatos G; Badioli M; Gaudreau L; Osmond J; Bernechea M; Garcia de Arquer FP; Gatti F; Koppens FH
    Nat Nanotechnol; 2012 May; 7(6):363-8. PubMed ID: 22562036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive Near-Infrared InAs Colloidal Quantum Dot-ZnON Hybrid Phototransistor Based on a Gradated Band Structure.
    Kim JH; Jung BK; Kim SK; Yun KR; Ahn J; Oh S; Jeon MG; Lee TJ; Kim S; Oh N; Oh SJ; Seong TY
    Adv Sci (Weinh); 2023 Jun; 10(18):e2207526. PubMed ID: 37088787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Colloidal-Quantum-Dot Infrared Photodiode with High Photoconductive Gain.
    Tang Y; Wu F; Chen F; Zhou Y; Wang P; Long M; Zhou W; Ning Z; He J; Gong F; Zhu Z; Qin S; Hu W
    Small; 2018 Nov; 14(48):e1803158. PubMed ID: 30345615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors.
    Ackerman MM; Tang X; Guyot-Sionnest P
    ACS Nano; 2018 Jul; 12(7):7264-7271. PubMed ID: 29975502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consecutive Junction-Induced Efficient Charge Separation Mechanisms for High-Performance MoS
    Pak S; Cho Y; Hong J; Lee J; Lee S; Hou B; An GH; Lee YW; Jang JE; Im H; Morris SM; Sohn JI; Cha S; Kim JM
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38264-38271. PubMed ID: 30338974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Inorganic Perovskite Quantum Dot-Organic Semiconductor Hybrid Phototransistors.
    Chen Y; Chu Y; Wu X; Ou-Yang W; Huang J
    Adv Mater; 2017 Nov; 29(44):. PubMed ID: 29027731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Efficient Rubrene-Graphene Charge-Transfer Interfaces as Phototransistors in the Visible Regime.
    Jones GF; Pinto RM; De Sanctis A; Nagareddy VK; Wright CD; Alves H; Craciun MF; Russo S
    Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28945933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury Telluride Quantum Dot Based Phototransistor Enabling High-Sensitivity Room-Temperature Photodetection at 2000 nm.
    Chen M; Lu H; Abdelazim NM; Zhu Y; Wang Z; Ren W; Kershaw SV; Rogach AL; Zhao N
    ACS Nano; 2017 Jun; 11(6):5614-5622. PubMed ID: 28525710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Photo-Induced Charge Separation Enabled by Metal-Chalcogenide Interfaces in Quantum-Dot/Metal-Oxide Hybrid Phototransistors.
    Kim J; Kwon SM; Jo C; Heo JS; Kim WB; Jung HS; Kim YH; Kim MG; Park SK
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16620-16629. PubMed ID: 32180407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photovoltage field-effect transistors.
    Adinolfi V; Sargent EH
    Nature; 2017 Feb; 542(7641):324-327. PubMed ID: 28178236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic and quantum dot hybrid photodetectors: towards full-band and fast detection.
    Liu J; Wang J; Xian K; Zhao W; Zhou Z; Li S; Ye L
    Chem Commun (Camb); 2023 Jan; 59(3):260-269. PubMed ID: 36510729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-Processed CsPbBr
    Chen K; Zhang X; Chen PA; Guo J; He M; Chen Y; Qiu X; Liu Y; Chen H; Zeng Z; Wang X; Yuan J; Ma W; Liao L; Nguyen TQ; Hu Y
    Adv Sci (Weinh); 2022 Apr; 9(12):e2105856. PubMed ID: 35229493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution Processed Hybrid Polymer: HgTe Quantum Dot Phototransistor with High Sensitivity and Fast Infrared Response up to 2400 nm at Room Temperature.
    Dong Y; Chen M; Yiu WK; Zhu Q; Zhou G; Kershaw SV; Ke N; Wong CP; Rogach AL; Zhao N
    Adv Sci (Weinh); 2020 Jun; 7(12):2000068. PubMed ID: 32596115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Black Phosphorus/Zero-Dimensional Quantum Dot Phototransistors: Tunable Photodoping and Enhanced Photoresponsivity.
    Lee AY; Ra HS; Kwak DH; Jeong MH; Park JH; Kang YS; Chae WS; Lee JS
    ACS Appl Mater Interfaces; 2018 May; 10(18):16033-16040. PubMed ID: 29649868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perovskite Quantum Dot-Reduced Graphene Oxide Superstructure for Efficient Photodetection.
    Chowdhury FA; Pradhan B; Ding Y; Towers A; Gesquiere A; Tetard L; Thomas J
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45165-45173. PubMed ID: 32897694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.