These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 29018218)
1. Associative visual learning by tethered bees in a controlled visual environment. Buatois A; Pichot C; Schultheiss P; Sandoz JC; Lazzari CR; Chittka L; Avarguès-Weber A; Giurfa M Sci Rep; 2017 Oct; 7(1):12903. PubMed ID: 29018218 [TBL] [Abstract][Full Text] [Related]
2. Honeybees in a virtual reality environment learn unique combinations of colour and shape. Rusch C; Roth E; Vinauger C; Riffell JA J Exp Biol; 2017 Oct; 220(Pt 19):3478-3487. PubMed ID: 28751492 [TBL] [Abstract][Full Text] [Related]
3. Transfer of Visual Learning Between a Virtual and a Real Environment in Honey Bees: The Role of Active Vision. Buatois A; Flumian C; Schultheiss P; Avarguès-Weber A; Giurfa M Front Behav Neurosci; 2018; 12():139. PubMed ID: 30057530 [TBL] [Abstract][Full Text] [Related]
4. Visual conditioning of the sting extension reflex in harnessed honeybees. Mota T; Roussel E; Sandoz JC; Giurfa M J Exp Biol; 2011 Nov; 214(Pt 21):3577-87. PubMed ID: 21993786 [TBL] [Abstract][Full Text] [Related]
5. Learning context modulates aversive taste strength in honey bees. de Brito Sanchez MG; Serre M; Avarguès-Weber A; Dyer AG; Giurfa M J Exp Biol; 2015 Mar; 218(Pt 6):949-59. PubMed ID: 25788729 [TBL] [Abstract][Full Text] [Related]
6. Visual discrimination transfer and modulation by biogenic amines in honeybees. Vieira AR; Salles N; Borges M; Mota T J Exp Biol; 2018 May; 221(Pt 9):. PubMed ID: 29559549 [TBL] [Abstract][Full Text] [Related]
7. Aminergic neuromodulation of associative visual learning in harnessed honey bees. Mancini N; Giurfa M; Sandoz JC; Avarguès-Weber A Neurobiol Learn Mem; 2018 Nov; 155():556-567. PubMed ID: 29793042 [TBL] [Abstract][Full Text] [Related]
8. The effect of cumulative experience on the use of elemental and configural visual discrimination strategies in honeybees. Giurfa M; Schubert M; Reisenman C; Gerber B; Lachnit H Behav Brain Res; 2003 Oct; 145(1-2):161-9. PubMed ID: 14529814 [TBL] [Abstract][Full Text] [Related]
9. Fast learning but coarse discrimination of colours in restrained honeybees. Niggebrügge C; Leboulle G; Menzel R; Komischke B; de Ibarra NH J Exp Biol; 2009 May; 212(Pt 9):1344-50. PubMed ID: 19376955 [TBL] [Abstract][Full Text] [Related]
10. Using an abstract geometry in virtual reality to explore choice behaviour: visual flicker preferences in honeybees. Van De Poll MN; Zajaczkowski EL; Taylor GJ; Srinivasan MV; van Swinderen B J Exp Biol; 2015 Nov; 218(Pt 21):3448-60. PubMed ID: 26347568 [TBL] [Abstract][Full Text] [Related]
11. Evidence for instantaneous e-vector detection in the honeybee using an associative learning paradigm. Sakura M; Okada R; Aonuma H Proc Biol Sci; 2012 Feb; 279(1728):535-42. PubMed ID: 21733901 [TBL] [Abstract][Full Text] [Related]
12. Long term effects of aversive reinforcement on colour discrimination learning in free-flying bumblebees. Rodríguez-Gironés MA; Trillo A; Corcobado G PLoS One; 2013; 8(8):e71551. PubMed ID: 23951186 [TBL] [Abstract][Full Text] [Related]
13. Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture? Sommerlandt FM; Spaethe J; Rössler W; Dyer AG PLoS One; 2016; 11(10):e0164386. PubMed ID: 27783640 [TBL] [Abstract][Full Text] [Related]
14. Visual associative learning in restrained honey bees with intact antennae. Dobrin SE; Fahrbach SE PLoS One; 2012; 7(6):e37666. PubMed ID: 22701575 [TBL] [Abstract][Full Text] [Related]
15. Higher-order discrimination learning by honeybees in a virtual environment. Buatois A; Laroche L; Lafon G; Avarguès-Weber A; Giurfa M Eur J Neurosci; 2020 Jan; 51(2):681-694. PubMed ID: 31785107 [TBL] [Abstract][Full Text] [Related]
16. The answer is blowing in the wind: free-flying honeybees can integrate visual and mechano-sensory inputs for making complex foraging decisions. Ravi S; Garcia JE; Wang C; Dyer AG J Exp Biol; 2016 Nov; 219(Pt 21):3465-3472. PubMed ID: 27591315 [TBL] [Abstract][Full Text] [Related]
17. Blue colour preference in honeybees distracts visual attention for learning closed shapes. Morawetz L; Svoboda A; Spaethe J; Dyer AG J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Oct; 199(10):817-27. PubMed ID: 23918312 [TBL] [Abstract][Full Text] [Related]
18. Visual learning in tethered bees modifies flight orientation and is impaired by epinastine. Kobayashi N; Hasegawa Y; Okada R; Sakura M J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Jul; 209(4):529-539. PubMed ID: 36930349 [TBL] [Abstract][Full Text] [Related]
19. Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes? Werner A; Stürzl W; Zanker J PLoS One; 2016; 11(2):e0147106. PubMed ID: 26886006 [TBL] [Abstract][Full Text] [Related]
20. Length of stimulus presentation and visual angle are critical for efficient visual PER conditioning in the restrained honey bee, Lichtenstein L; Lichtenstein M; Spaethe J J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 30018159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]