These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 29018256)
21. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus. Haba E; Bouhdid S; Torrego-Solana N; Marqués AM; Espuny MJ; García-Celma MJ; Manresa A Int J Pharm; 2014 Dec; 476(1-2):134-41. PubMed ID: 25269010 [TBL] [Abstract][Full Text] [Related]
22. Chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. Thanomsub B; Pumeechockchai W; Limtrakul A; Arunrattiyakorn P; Petchleelaha W; Nitoda T; Kanzaki H Bioresour Technol; 2007 Mar; 98(5):1149-53. PubMed ID: 16781144 [TBL] [Abstract][Full Text] [Related]
23. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Haba E; Pinazo A; Jauregui O; Espuny MJ; Infante MR; Manresa A Biotechnol Bioeng; 2003 Feb; 81(3):316-22. PubMed ID: 12474254 [TBL] [Abstract][Full Text] [Related]
24. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil. He C; Dong W; Li J; Li Y; Huang C; Ma Y Biotechnol Lett; 2017 Sep; 39(9):1381-1388. PubMed ID: 28600649 [TBL] [Abstract][Full Text] [Related]
25. Rhamnolipids from Pseudomonas aeruginosa strain W10; as antibiofilm/antibiofouling products for metal protection. Chebbi A; Elshikh M; Haque F; Ahmed S; Dobbin S; Marchant R; Sayadi S; Chamkha M; Banat IM J Basic Microbiol; 2017 May; 57(5):364-375. PubMed ID: 28156000 [TBL] [Abstract][Full Text] [Related]
26. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Wittgens A; Kovacic F; Müller MM; Gerlitzki M; Santiago-Schübel B; Hofmann D; Tiso T; Blank LM; Henkel M; Hausmann R; Syldatk C; Wilhelm S; Rosenau F Appl Microbiol Biotechnol; 2017 Apr; 101(7):2865-2878. PubMed ID: 27988798 [TBL] [Abstract][Full Text] [Related]
27. Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. Zhang GL; Wu YT; Qian XP; Meng Q J Zhejiang Univ Sci B; 2005 Aug; 6(8):725-30. PubMed ID: 16052704 [TBL] [Abstract][Full Text] [Related]
28. Effects of purified Pseudomonas rhamnolipids on bioelectric properties of sheep tracheal epithelium. Graham A; Steel DM; Wilson R; Cole PJ; Alton EW; Geddes DM Exp Lung Res; 1993; 19(1):77-89. PubMed ID: 8382605 [TBL] [Abstract][Full Text] [Related]
29. Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Hošková M; Schreiberová O; Ježdík R; Chudoba J; Masák J; Sigler K; Rezanka T Bioresour Technol; 2013 Feb; 130():510-6. PubMed ID: 23313768 [TBL] [Abstract][Full Text] [Related]
30. Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages. McClure CD; Schiller NL J Leukoc Biol; 1992 Feb; 51(2):97-102. PubMed ID: 1431557 [TBL] [Abstract][Full Text] [Related]
31. Solution properties and vesicle formation of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa SP4. Pornsunthorntawee O; Chavadej S; Rujiravanit R Colloids Surf B Biointerfaces; 2009 Aug; 72(1):6-15. PubMed ID: 19380215 [TBL] [Abstract][Full Text] [Related]
32. Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Syldatk C; Lang S; Matulovic U; Wagner F Z Naturforsch C Biosci; 1985; 40(1-2):61-7. PubMed ID: 3922147 [TBL] [Abstract][Full Text] [Related]
33. Use of rhamnolipid biosurfactant for membrane biofouling prevention and cleaning. Kim LH; Jung Y; Kim SJ; Kim CM; Yu HW; Park HD; Kim IS Biofouling; 2015; 31(2):211-20. PubMed ID: 25789851 [TBL] [Abstract][Full Text] [Related]
34. Characterization of rhamnolipid production by Burkholderia glumae. Costa SG; Déziel E; Lépine F Lett Appl Microbiol; 2011 Dec; 53(6):620-7. PubMed ID: 21933203 [TBL] [Abstract][Full Text] [Related]
35. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. Elshikh M; Funston S; Chebbi A; Ahmed S; Marchant R; Banat IM N Biotechnol; 2017 May; 36():26-36. PubMed ID: 28065676 [TBL] [Abstract][Full Text] [Related]
36. Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass. Sodagari M; Wang H; Newby BM; Ju LK Colloids Surf B Biointerfaces; 2013 Mar; 103():121-8. PubMed ID: 23201728 [TBL] [Abstract][Full Text] [Related]
37. Characterization by electrospray ionization and tandem mass spectrometry of rhamnolipids produced by two Pseudomonas aeruginosa strains isolated from Brazilian crude oil. Pereira JF; Gudiña EJ; Dória ML; Domingues MR; Rodrigues LR; Teoxeira JA; Coutinho JA Eur J Mass Spectrom (Chichester); 2012; 18(4):399-406. PubMed ID: 22971700 [TBL] [Abstract][Full Text] [Related]
38. Rhamnolipids from non-pathogenic Acinetobacter calcoaceticus: Bioreactor-scale production, characterization and wound healing potency. Zhu P; Zhang S; Kumar R; Zhang Z; Zhang Z; Wang Y; Jiang X; Lin K; Kaur G; Yung KKL N Biotechnol; 2022 Mar; 67():23-31. PubMed ID: 34890838 [TBL] [Abstract][Full Text] [Related]
39. Structural and Physicochemical Characterization of Rhamnolipids produced by Pseudomonas aeruginosa P6. El-Housseiny GS; Aboshanab KM; Aboulwafa MM; Hassouna NA AMB Express; 2020 Nov; 10(1):201. PubMed ID: 33146788 [TBL] [Abstract][Full Text] [Related]
40. Production of rhamnolipids with different proportions of mono-rhamnolipids using crude glycerol and a comparison of their application potential for oil recovery from oily sludge. Zhao F; Jiang H; Sun H; Liu C; Han S; Zhang Y RSC Adv; 2019 Jan; 9(6):2885-2891. PubMed ID: 35518985 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]