BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 29018285)

  • 1. The ultrastructure of spinal cord perivascular spaces: Implications for the circulation of cerebrospinal fluid.
    Lam MA; Hemley SJ; Najafi E; Vella NGF; Bilston LE; Stoodley MA
    Sci Rep; 2017 Oct; 7(1):12924. PubMed ID: 29018285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of extradural constriction on CSF flow in rat spinal cord.
    Berliner JA; Woodcock T; Najafi E; Hemley SJ; Lam M; Cheng S; Bilston LE; Stoodley MA
    Fluids Barriers CNS; 2019 Mar; 16(1):7. PubMed ID: 30909935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid outflow in the rat spinal cord: the role of perivascular and paravascular pathways.
    Liu S; Lam MA; Sial A; Hemley SJ; Bilston LE; Stoodley MA
    Fluids Barriers CNS; 2018 Apr; 15(1):13. PubMed ID: 29704892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of intraventricularly injected horseradish peroxidase in cerebrospinal fluid compartments of the rat spinal cord.
    Cifuentes M; Fernández-LLebrez P; Pérez J; Pérez-Fígares JM; Rodríguez EM
    Cell Tissue Res; 1992 Dec; 270(3):485-94. PubMed ID: 1486601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain.
    Zhang ET; Richards HK; Kida S; Weller RO
    Acta Neuropathol; 1992; 83(3):233-9. PubMed ID: 1373020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pathway of subarachnoid CSF moving into the spinal parenchyma and the role of astrocytic aquaporin-4 in this process.
    Wei F; Zhang C; Xue R; Shan L; Gong S; Wang G; Tao J; Xu G; Zhang G; Wang L
    Life Sci; 2017 Aug; 182():29-40. PubMed ID: 28576642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological indications for considerable diffuse reabsorption of cerebrospinal fluid in spinal meninges particularly in the areas of meningeal funnels. An electronmicroscopical study including tracing experiments in rats.
    Zenker W; Bankoul S; Braun JS
    Anat Embryol (Berl); 1994 Mar; 189(3):243-58. PubMed ID: 8042766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid flow in an animal model of post-traumatic syringomyelia.
    Brodbelt AR; Stoodley MA; Watling AM; Tu J; Jones NR
    Eur Spine J; 2003 Jun; 12(3):300-6. PubMed ID: 12800004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormalities in spinal cord ultrastructure in a rat model of post-traumatic syringomyelia.
    Berliner J; Hemley S; Najafi E; Bilston L; Stoodley M; Lam M
    Fluids Barriers CNS; 2020 Feb; 17(1):11. PubMed ID: 32111246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paravascular channels, cisterns, and the subarachnoid space in the rat brain: A single compartment with preferential pathways.
    Bedussi B; van der Wel NN; de Vos J; van Veen H; Siebes M; VanBavel E; Bakker EN
    J Cereb Blood Flow Metab; 2017 Apr; 37(4):1374-1385. PubMed ID: 27306753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery.
    Pizzo ME; Wolak DJ; Kumar NN; Brunette E; Brunnquell CL; Hannocks MJ; Abbott NJ; Meyerand ME; Sorokin L; Stanimirovic DB; Thorne RG
    J Physiol; 2018 Feb; 596(3):445-475. PubMed ID: 29023798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of anatomical fine structure on the dispersion of solutes in the spinal subarachnoid space.
    Stockman HW
    J Biomech Eng; 2007 Oct; 129(5):666-75. PubMed ID: 17887892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for rapid fluid flow from the subarachnoid space into the spinal cord central canal in the rat.
    Stoodley MA; Jones NR; Brown CJ
    Brain Res; 1996 Jan; 707(2):155-64. PubMed ID: 8919292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Connective tissue in the perivascular spaces of subependymal capillaries of the spinal cord in the rabbit].
    Desaga U; Leonhardt H
    Z Mikrosk Anat Forsch; 1976; 90(5):801-15. PubMed ID: 1031516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular basement membranes as pathways for the passage of fluid into and out of the brain.
    Morris AW; Sharp MM; Albargothy NJ; Fernandes R; Hawkes CA; Verma A; Weller RO; Carare RO
    Acta Neuropathol; 2016 May; 131(5):725-36. PubMed ID: 26975356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebrospinal fluid flow in an animal model of noncommunicating syringomyelia.
    Stoodley MA; Gutschmidt B; Jones NR
    Neurosurgery; 1999 May; 44(5):1065-75; discussion 1075-6. PubMed ID: 10232540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid solute transport throughout the brain via paravascular fluid pathways.
    Rennels ML; Blaumanis OR; Grady PA
    Adv Neurol; 1990; 52():431-9. PubMed ID: 2396537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat.
    Ghersi-Egea JF; Finnegan W; Chen JL; Fenstermacher JD
    Neuroscience; 1996 Dec; 75(4):1271-88. PubMed ID: 8938759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of the relative timing of arterial and subarachnoid space pulse waves on spinal perivascular cerebrospinal fluid flow as a possible factor in syrinx development.
    Bilston LE; Stoodley MA; Fletcher DF
    J Neurosurg; 2010 Apr; 112(4):808-13. PubMed ID: 19522574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in intrathoracic pressure, not arterial pulsations, exert the greatest effect on tracer influx in the spinal cord.
    Liu S; Bilston LE; Flores Rodriguez N; Wright C; McMullan S; Lloyd R; Stoodley MA; Hemley SJ
    Fluids Barriers CNS; 2022 Feb; 19(1):14. PubMed ID: 35135574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.