BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 29018285)

  • 21. Disturbances of cerebrospinal fluid flow attributable to arachnoid scarring cause interstitial edema of the cat spinal cord.
    Klekamp J; Völkel K; Bartels CJ; Samii M
    Neurosurgery; 2001 Jan; 48(1):174-85; discussion 185-6. PubMed ID: 11152344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arachnoidea and subarachnoid spaces of the vault of the skull in man.
    Rascol MM; Izard JY
    Acta Neuropathol; 1978 Jan; 41(1):41-4. PubMed ID: 636836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for a 'paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space.
    Rennels ML; Gregory TF; Blaumanis OR; Fujimoto K; Grady PA
    Brain Res; 1985 Feb; 326(1):47-63. PubMed ID: 3971148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Altered subarachnoid space compliance and fluid flow in an animal model of posttraumatic syringomyelia.
    Brodbelt AR; Stoodley MA; Watling AM; Tu J; Burke S; Jones NR
    Spine (Phila Pa 1976); 2003 Oct; 28(20):E413-9. PubMed ID: 14560096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fenestrated capillaries in subarachnoid space in the caudal spinal cord of the premature rat: an electron microscopic observation.
    Fujimoto K; Hisaichi M
    Brain Res; 1995 Dec; 702(1-2):284-6. PubMed ID: 8846091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathways of fluid drainage from the brain--morphological aspects and immunological significance in rat and man.
    Weller RO; Kida S; Zhang ET
    Brain Pathol; 1992 Oct; 2(4):277-84. PubMed ID: 1341963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Is bulk flow plausible in perivascular, paravascular and paravenous channels?
    Faghih MM; Sharp MK
    Fluids Barriers CNS; 2018 Jun; 15(1):17. PubMed ID: 29903035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of extracellular tracers in perivascular spaces of the rat brain.
    Ichimura T; Fraser PA; Cserr HF
    Brain Res; 1991 Apr; 545(1-2):103-13. PubMed ID: 1713524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Observations of vascularization in the spinal cord of mouse embryos, with special reference to development of boundary membranes and perivascular spaces.
    Nakao T; Ishizawa A; Ogawa R
    Anat Rec; 1988 Jun; 221(2):663-77. PubMed ID: 3414988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alcohol promotes waste clearance in the CNS via brain vascular reactivity.
    Cheng Y; Liu X; Ma X; Garcia R; Belfield K; Haorah J
    Free Radic Biol Med; 2019 Nov; 143():115-126. PubMed ID: 31362045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chiari malformation may increase perivascular cerebrospinal fluid flow into the spinal cord: A subject-specific computational modelling study.
    Lloyd RA; Fletcher DF; Clarke EC; Bilston LE
    J Biomech; 2017 Dec; 65():185-193. PubMed ID: 29096983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of anatomical fine structure on the flow of cerebrospinal fluid in the spinal subarachnoid space.
    Stockman HW
    J Biomech Eng; 2006 Feb; 128(1):106-14. PubMed ID: 16532623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum.
    Zhang ET; Inman CB; Weller RO
    J Anat; 1990 Jun; 170():111-23. PubMed ID: 2254158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The olfactory route for cerebrospinal fluid drainage into the peripheral lymphatic system.
    Walter BA; Valera VA; Takahashi S; Ushiki T
    Neuropathol Appl Neurobiol; 2006 Aug; 32(4):388-96. PubMed ID: 16866984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arterial pulsation-dependent perivascular cerebrospinal fluid flow into the central canal in the sheep spinal cord.
    Stoodley MA; Brown SA; Brown CJ; Jones NR
    J Neurosurg; 1997 Apr; 86(4):686-93. PubMed ID: 9120633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-neuronal cells in the spinal cord of nude and heterozygous mice. II. Agranular leukocytes in the subarachnoid and perivascular space.
    Kerns JM; Nierzwicki SA
    J Neurocytol; 1981 Oct; 10(5):819-31. PubMed ID: 7310477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anatomical relationships of the pia mater to cerebral blood vessels in man.
    Hutchings M; Weller RO
    J Neurosurg; 1986 Sep; 65(3):316-25. PubMed ID: 3734882
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spinal cord compression injury in guinea pigs: structural changes of endothelium and its perivascular cell associations after blood-brain barrier breakdown and repair.
    Jaeger CB; Blight AR
    Exp Neurol; 1997 Apr; 144(2):381-99. PubMed ID: 9168838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Poroelastic Fluid/Structure-Interaction Model of Cerebrospinal Fluid Dynamics in the Cord With Syringomyelia and Adjacent Subarachnoid-Space Stenosis.
    Bertram CD; Heil M
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27617710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A ferritin tracer study of compensatory spinal CSF outflow pathways in kaolin-induced hydrocephalus.
    Voelz K; Kondziella D; von Rautenfeld DB; Brinker T; Lüdemann W
    Acta Neuropathol; 2007 May; 113(5):569-75. PubMed ID: 17295026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.