These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29018319)

  • 1. On the Value of Estimating Human Arm Stiffness during Virtual Teleoperation with Robotic Manipulators.
    Buzzi J; Ferrigno G; Jansma JM; De Momi E
    Front Neurosci; 2017; 11():528. PubMed ID: 29018319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Uncontrolled Manifold Analysis of Arm Joint Variability in Virtual Planar Position and Orientation Telemanipulation.
    Buzzi J; De Momi E; Nisky I
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):391-402. PubMed ID: 29993394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A teleoperated control approach for anthropomorphic manipulator using magneto-inertial sensors.
    Noccaro A; Cordella F; Zollo L; Di Pino G; Guglielmelli E; Formica D
    ROMAN; 2017 Aug; 2017():156-161. PubMed ID: 30949293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of on-site teleoperated milling with haptic assistance.
    Drobinsky S; de la Fuente M; Puladi B; Radermacher K
    Int J Comput Assist Radiol Surg; 2023 Nov; 18(11):1969-1976. PubMed ID: 37454325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological Plausibility of Arm Postures Influences the Controllability of Robotic Arm Teleoperation.
    Mick S; Badets A; Oudeyer PY; Cattaert D; De Rugy A
    Hum Factors; 2022 Mar; 64(2):372-384. PubMed ID: 32809867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task performance evaluation of asymmetric semiautonomous teleoperation of mobile twin-arm robotic manipulators.
    Malysz P; Sirouspour S
    IEEE Trans Haptics; 2013; 6(4):484-95. PubMed ID: 24808400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel control architecture for physiological tremor compensation in teleoperated systems.
    Ghorbanian A; Zareinejad M; Rezaei SM; Sheikhzadeh H; Baghestan K
    Int J Med Robot; 2013 Sep; 9(3):280-97. PubMed ID: 22588805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Teleoperated Surgical Robot with Adaptive Interactive Control Architecture for Tissue Identification.
    Sheng Y; Cheng H; Wang Y; Zhao H; Ding H
    Bioengineering (Basel); 2023 Oct; 10(10):. PubMed ID: 37892887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncontrolled manifold analysis of arm joint angle variability during robotic teleoperation and freehand movement of surgeons and novices.
    Nisky I; Hsieh MH; Okamura AM
    IEEE Trans Biomed Eng; 2014 Dec; 61(12):2869-81. PubMed ID: 24967980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task-Level Authoring for Remote Robot Teleoperation.
    Senft E; Hagenow M; Welsh K; Radwin R; Zinn M; Gleicher M; Mutlu B
    Front Robot AI; 2021; 8():707149. PubMed ID: 34646866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergy-Based Bilateral Port: A Universal Control Module for Tele-Manipulation Frameworks Using Asymmetric Master-Slave Systems.
    Brygo A; Sarakoglou I; Grioli G; Tsagarakis N
    Front Bioeng Biotechnol; 2017; 5():19. PubMed ID: 28421179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Teleoperation of an Anthropomorphic Robot Hand with a Metamorphic Palm and Tunable-Stiffness Soft Fingers.
    Chen B; Chen Z; Chen X; Mao S; Pan F; Li L; Liu W; Min H; Ding X; Fang B; Sun F; Wen L
    Soft Robot; 2024 Jun; 11(3):508-518. PubMed ID: 38386776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control design and implementation of a novel master-slave surgery robot system, MicroHand A.
    Sang H; Wang S; Li J; He C; Zhang L; Wang X
    Int J Med Robot; 2011 Sep; 7(3):334-47. PubMed ID: 21732498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An all-joint-control master device for single-port laparoscopic surgery robots.
    Shim S; Kang T; Ji D; Choi H; Joung S; Hong J
    Int J Comput Assist Radiol Surg; 2016 Aug; 11(8):1547-57. PubMed ID: 26872809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wearable vibrotactile system for distributed guidance in teleoperation and virtual environments.
    Bai D; Ju F; Qi F; Cao Y; Wang Y; Chen B
    Proc Inst Mech Eng H; 2019 Feb; 233(2):244-253. PubMed ID: 30595086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic analysis of motor performance in robot-assisted surgery: a preliminary study.
    Nisky I; Patil S; Hsieh MH; Okamura AM
    Stud Health Technol Inform; 2013; 184():302-8. PubMed ID: 23400175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical finite-time cooperative control for teleoperation of networked disturbed mobile manipulators.
    Fu J; Xu JZ; Ge MF; Ding TF; Park JH
    ISA Trans; 2023 Sep; 140():266-278. PubMed ID: 37301648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive neural network based position tracking control for Dual-master/Single-slave teleoperation system under communication constant time delays.
    Ji Y; Liu D; Guo Y
    ISA Trans; 2019 Oct; 93():80-92. PubMed ID: 30910311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable teleoperation controller with 2-DoF robotic arm and haptic feedback for enhanced interaction in virtual reality.
    Zhang Z; Qian C
    Front Neurorobot; 2023; 17():1228587. PubMed ID: 37609455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.