BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29018806)

  • 1. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain.
    Panel N; Sun YJ; Fuentes EJ; Simonson T
    Front Mol Biosci; 2017; 4():65. PubMed ID: 29018806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Tiam1 PDZ domain couples to Syndecan1 and promotes cell-matrix adhesion.
    Shepherd TR; Klaus SM; Liu X; Ramaswamy S; DeMali KA; Fuentes EJ
    J Mol Biol; 2010 May; 398(5):730-46. PubMed ID: 20361982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Design of PDZ-Peptide Binding.
    Panel N; Villa F; Opuu V; Mignon D; Simonson T
    Methods Mol Biol; 2021; 2256():237-255. PubMed ID: 34014526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and thermodynamic analysis of PDZ-ligand interactions.
    Shepherd TR; Fuentes EJ
    Methods Enzymol; 2011; 488():81-100. PubMed ID: 21195225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain.
    Hou T; Zhang W; Case DA; Wang W
    J Mol Biol; 2008 Feb; 376(4):1201-14. PubMed ID: 18206907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate PDZ/Peptide Binding Specificity with Additive and Polarizable Free Energy Simulations.
    Panel N; Villa F; Fuentes EJ; Simonson T
    Biophys J; 2018 Mar; 114(5):1091-1102. PubMed ID: 29539396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-ligand binding free energy estimation using molecular mechanics and continuum electrostatics. Application to HIV-1 protease inhibitors.
    Zoete V; Michielin O; Karplus M
    J Comput Aided Mol Des; 2003 Dec; 17(12):861-80. PubMed ID: 15124934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based identification of CaMKIIα-interacting MUPP1 PDZ domains and rational design of peptide ligands to target such interaction in human fertilization.
    Zhang YL; Han ZF; Sun YP
    Amino Acids; 2016 Jun; 48(6):1509-21. PubMed ID: 26984442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies.
    Genheden S; Ryde U
    Proteins; 2012 May; 80(5):1326-42. PubMed ID: 22274991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empirical calculation of the relative free energies of peptide binding to the molecular chaperone DnaK.
    Kasper P; Christen P; Gehring H
    Proteins; 2000 Aug; 40(2):185-92. PubMed ID: 10842335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Design of the Tiam1 PDZ Domain and Its Ligand Binding.
    Mignon D; Panel N; Chen X; Fuentes EJ; Simonson T
    J Chem Theory Comput; 2017 May; 13(5):2271-2289. PubMed ID: 28394603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the LIE Method for Binding Free Energy Calculations of Protein-Ligand Complexes.
    Miranda WE; Noskov SY; Valiente PA
    J Chem Inf Model; 2015 Sep; 55(9):1867-77. PubMed ID: 26180998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method.
    van Lipzig MM; ter Laak AM; Jongejan A; Vermeulen NP; Wamelink M; Geerke D; Meerman JH
    J Med Chem; 2004 Feb; 47(4):1018-30. PubMed ID: 14761204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuum solvation models in the linear interaction energy method.
    Carlsson J; Andér M; Nervall M; Aqvist J
    J Phys Chem B; 2006 Jun; 110(24):12034-41. PubMed ID: 16800513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model.
    Aleksandrov A; Lin FY; Roux B; MacKerell AD
    J Comput Chem; 2018 Aug; 39(22):1707-1719. PubMed ID: 29737546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of PDZ domain-peptide interactions using an integrated protocol of QM/MM, PB/SA, and CFEA analyses.
    Tian F; Lv Y; Zhou P; Yang L
    J Comput Aided Mol Des; 2011 Oct; 25(10):947-58. PubMed ID: 21964565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.
    Archontis G; Simonson T; Karplus M
    J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What determines the van der Waals coefficient beta in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations?
    Wang W; Wang J; Kollman PA
    Proteins; 1999 Feb; 34(3):395-402. PubMed ID: 10024025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-amino acid substitutions alter the specificity and affinity of PDZ domains for their ligands.
    Gee SH; Quenneville S; Lombardo CR; Chabot J
    Biochemistry; 2000 Nov; 39(47):14638-46. PubMed ID: 11087420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.