These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 29018823)

  • 1. A High Frequency Geometric Focusing Transducer Based on 1-3 Piezocomposite for Intravascular Ultrasound Imaging.
    Jian X; Han Z; Liu P; Xu J; Li Z; Li P; Shao W; Cui Y
    Biomed Res Int; 2017; 2017():9327270. PubMed ID: 29018823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Imaging.
    Lee J; Jang J; Chang JH
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):671-680. PubMed ID: 27244714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PMN-PT Single Crystal Ultrasonic Transducer With Half-Concave Geometric Design for IVUS Imaging.
    Fei C; Yang Y; Guo F; Lin P; Chen Q; Zhou Q; Sun L
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2087-2092. PubMed ID: 29989942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intravascular Ultrasound Transducer by Using Polarization Inversion Technique for Tissue Harmonic Imaging: Modeling and Experiments.
    Sung JH; Jeong EY; Jeong JS
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3380-3391. PubMed ID: 32286955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of High-Frequency (>60 MHz) Intravascular Ultrasound (IVUS) Transducer by Using Asymmetric Electrodes for Improved Beam Profile.
    Sung JH; Jeong JS
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30551639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel dual-frequency imaging method for intravascular ultrasound applications.
    Qiu W; Chen Y; Wong CM; Liu B; Dai J; Zheng H
    Ultrasonics; 2015 Mar; 57():31-5. PubMed ID: 25454093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Dual-Frequency Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Tissue Harmonic Imaging.
    Lee J; Shin EJ; Lee C; Chang JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Sep; 65(9):1571-1582. PubMed ID: 29994203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 35 MHz/105 MHz Dual-Element Focused Transducer for Intravascular Ultrasound Tissue Imaging Using the Third Harmonic.
    Lee J; Moon JY; Chang JH
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30011948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-Element Intravascular Ultrasound Transducer for Tissue Harmonic Imaging and Frequency Compounding: Development and Imaging Performance Assessment.
    Lee J; Chang JH
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3146-3155. PubMed ID: 30835204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 100-V Withstanding Analog-Front-End for High-Resolution Intravascular Ultrasound Imaging.
    Chen W; Fleischman A; Majerus SJA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3251-3254. PubMed ID: 34891934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectiveness of synthetic aperture focusing and coherence factor weighting for intravascular ultrasound imaging.
    Kang S; Lee J; Chang JH
    Ultrasonics; 2021 May; 113():106364. PubMed ID: 33517139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Intravascular Ultrasound Catheter-Based Transducers Using the Resolution Integral.
    McLeod C; Moran CM; McBride KA; Pye SD
    Ultrasound Med Biol; 2018 Dec; 44(12):2802-2812. PubMed ID: 30146091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different layer thickness influences of a 50MHz intravascular ultrasound transducer.
    Zhangjian L; Weiwei S; Yongjia X; Zhile H; Yaoyao C
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():542-5. PubMed ID: 25570016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-frequency ultrasonic imaging of the anterior segment using an annular array transducer.
    Silverman RH; Ketterling JA; Coleman DJ
    Ophthalmology; 2007 Apr; 114(4):816-22. PubMed ID: 17141314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deconvolution in Intravascular Ultrasound to Improve Lateral Resolution.
    Li M; Shao W; Jiang X; Feng Z
    Ultrason Imaging; 2019 Jul; 41(4):191-205. PubMed ID: 30990118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging.
    Li X; Ma T; Tian J; Han P; Zhou Q; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jul; 61(7):1171-8. PubMed ID: 24960706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography.
    Ma J; Martin KH; Li Y; Dayton PA; Shung KK; Zhou Q; Jiang X
    Phys Med Biol; 2015 May; 60(9):3441-57. PubMed ID: 25856384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transducer for harmonic intravascular ultrasound imaging.
    Vos HJ; Frijlink ME; Droog E; Goertz DE; Blacquière G; Gisolf A; de Jong N; van der Steen AF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2418-22. PubMed ID: 16463509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phantom evaluation of stacked-type dual-frequency 1-3 composite transducers: A feasibility study on intracavitary acoustic angiography.
    Kim J; Li S; Kasoji S; Dayton PA; Jiang X
    Ultrasonics; 2015 Dec; 63():7-15. PubMed ID: 26112426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Backing-Layer-Shared Miniature Dual-Frequency Ultrasound Probe for Intravascular Ultrasound Imaging: In Vitro and Ex Vivo Validations.
    He Y; Liu X; Zhang J; Peng C
    Biosensors (Basel); 2023 Nov; 13(11):. PubMed ID: 37998146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.