These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2901903)

  • 81. Effects of luteinizing-hormone-releasing hormone, alpha-melanocyte-stimulating hormone, naloxone, dexamethasone and indomethacin on interleukin-2-induced corticotropin-releasing factor release.
    Karanth S; Lyson K; Aguila MC; McCann SM
    Neuroimmunomodulation; 1995; 2(3):166-73. PubMed ID: 8646567
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Hypoprolactinemia induced by hypophysectomy and long-term bromocriptine treatment decreases tuberoinfundibular dopaminergic neuronal activity and the responsiveness of these neurons to prolactin.
    Demarest KT; Riegle GD; Moore KE
    Neuroendocrinology; 1985 May; 40(5):369-76. PubMed ID: 3925360
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Effects of catecholamine-depleting medullary knife cuts on corticotropin-releasing factor and vasopressin immunoreactivity in the hypothalamus of normal and steroid-manipulated rats.
    Sawchenko PE
    Neuroendocrinology; 1988 Nov; 48(5):459-70. PubMed ID: 2469027
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Functional impairment of hypothalamic corticotropin-releasing factor neurons with immunotargeted toxins enhances food intake induced by neuropeptide Y.
    Menzaghi F; Heinrichs SC; Pich EM; Tilders FJ; Koob GF
    Brain Res; 1993 Jul; 618(1):76-82. PubMed ID: 8402180
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Corticotropin releasing factor (CRF) immunoreactivity in hypothalamic and extrahypothalamic nuclei of sheep brain.
    Palkovits M; Brownstein MJ; Vale W
    Neuroendocrinology; 1983 Oct; 37(4):302-5. PubMed ID: 6605489
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Lateralized decrease in self-stimulation induced by haloperidol in rats with unilateral 6-hydroxydopamine lesions.
    Carey RJ
    Behav Brain Res; 1985 Dec; 18(3):215-22. PubMed ID: 3937541
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Met-enkephalin-like immunoreactivity in neurointermediate pituitary is decreased by DA receptor stimulation.
    George SR; Kertesz M
    Peptides; 1986; 7(2):277-81. PubMed ID: 3737447
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Quantitative changes of CRF-like immunoreactivity in eels treated with reserpine and cortisol.
    Olivereau M; Olivereau J
    Peptides; 1988; 9(6):1261-7. PubMed ID: 3073357
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Clonidine prevents corticotropin releasing factor-induced epileptogenic activity in rats.
    Marrosu F; Giagheddu M; Gessa GL; Fratta W
    Epilepsia; 1992; 33(3):435-8. PubMed ID: 1592016
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Depletion of epinephrine in rat hypothalamus by a dopamine agonist, pergolide.
    Fuller RW; Perry KW; Hemrick-Luecke SK
    Neurochem Res; 1982 Apr; 7(4):399-405. PubMed ID: 6125905
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Increased growth hormone response to clonidine in 6-hydroxydopamine-treated rats.
    Siever LJ; Tamminga C; Pert A
    Psychopharmacology (Berl); 1987; 91(3):342-4. PubMed ID: 3104956
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Modification of reserpine induced rigidity by dopaminergic and alpha-adrenergic drugs.
    Anderson RJ
    Acta Neurol Scand; 1985 Dec; 72(6):584-9. PubMed ID: 2869634
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Oestrogen-induced hyperprolactinaemia in the rat: reduced concentrations of hypothalamic dopamine and the effects of bromocriptine.
    Smythe GA; Brandstater JF
    Aust J Biol Sci; 1980 Jun; 33(3):329-39. PubMed ID: 7425967
    [No Abstract]   [Full Text] [Related]  

  • 94. Selective regional effect of various neuroactive drugs on bromocriptine concentration in the brain of rats.
    Rabey JM; Graff E; Oberman Z; Flechter S; Vardi J
    Acta Neurol Scand; 1986 Oct; 74(4):289-92. PubMed ID: 3811835
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Dopaminergic and Adrenergic Pathways as Targets for Drug Repurposing in the Neuroimmune Network.
    Cosentino M
    J Neuroimmune Pharmacol; 2020 Mar; 15(1):13-16. PubMed ID: 32103405
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Neurohormonal and metabolic effects of medetomidine compared with xylazine in beagle dogs.
    Ambrisko TD; Hikasa Y
    Can J Vet Res; 2002 Jan; 66(1):42-9. PubMed ID: 11858648
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Effect of dopaminergic and alpha-adrenergic modulation on corticotropin-releasing factor immunoreactivity in rat hypothalamus.
    Haas DA; George SR
    Can J Physiol Pharmacol; 1988 Jun; 66(6):754-61. PubMed ID: 2901903
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Differential alpha-1 and alpha-2 adrenergic effects on hypothalamic corticotropin-releasing factor and plasma adrenocorticotropin.
    Haas DA; Sturtridge WC; George SR
    Neuroscience; 1990; 38(3):693-701. PubMed ID: 1980144
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Neuropeptide Y-induced effects on hypothalamic corticotropin-releasing factor content and release are dependent on noradrenergic/adrenergic neurotransmission.
    Haas DA; George SR
    Brain Res; 1989 Oct; 498(2):333-8. PubMed ID: 2551461
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The corticotropin-releasing factor release in rat hypophysial portal blood is mediated by brain catecholamines.
    Guillaume V; Conte-Devolx B; Szafarczyk A; Malaval F; Pares-Herbute N; Grino M; Alonso G; Assenmacher I; Oliver C
    Neuroendocrinology; 1987 Aug; 46(2):143-6. PubMed ID: 2819759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.