These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29019182)

  • 21. Biodegradable and Biocompatible Polyhydroxy-alkanoates (PHA): Auspicious Microbial Macromolecules for Pharmaceutical and Therapeutic Applications.
    Koller M
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29419813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of polyhydroxyalkanoate from palm oil and some new applications.
    Sudesh K; Bhubalan K; Chuah JA; Kek YK; Kamilah H; Sridewi N; Lee YF
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1373-86. PubMed ID: 21279347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined polyhydroxyalkanoates (PHA) and 1,3-propanediol production from crude glycerol: Selective conversion of volatile fatty acids into PHA by mixed microbial consortia.
    Burniol-Figols A; Varrone C; Le SB; Daugaard AE; Skiadas IV; Gavala HN
    Water Res; 2018 Jun; 136():180-191. PubMed ID: 29505919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing.
    Kosseva MR; Rusbandi E
    Int J Biol Macromol; 2018 Feb; 107(Pt A):762-778. PubMed ID: 28928063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthetic biology strategies for synthesizing polyhydroxyalkanoates from unrelated carbon sources.
    Agnew DE; Pfleger BF
    Chem Eng Sci; 2013 Nov; 103():58-67. PubMed ID: 36249713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The underexplored role of diverse stress factors in microbial biopolymer synthesis.
    Obruca S; Sedlacek P; Koller M
    Bioresour Technol; 2021 Apr; 326():124767. PubMed ID: 33540213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial polyhydroxyalkanoates: Still fabulous?
    Możejko-Ciesielska J; Kiewisz R
    Microbiol Res; 2016 Nov; 192():271-282. PubMed ID: 27664746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Next-Generation Industrial Biotechnology-Transforming the Current Industrial Biotechnology into Competitive Processes.
    Yu LP; Wu FQ; Chen GQ
    Biotechnol J; 2019 Sep; 14(9):e1800437. PubMed ID: 30927495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flux balance analysis of mixed microbial cultures: application to the production of polyhydroxyalkanoates from complex mixtures of volatile fatty acids.
    Pardelha F; Albuquerque MG; Reis MA; Dias JM; Oliveira R
    J Biotechnol; 2012 Dec; 162(2-3):336-45. PubMed ID: 23036926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels.
    Gao X; Chen JC; Wu Q; Chen GQ
    Curr Opin Biotechnol; 2011 Dec; 22(6):768-74. PubMed ID: 21705209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner.
    Koller M; Maršálek L; de Sousa Dias MM; Braunegg G
    N Biotechnol; 2017 Jul; 37(Pt A):24-38. PubMed ID: 27184617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyhydroxyalkanoates: bioplastics with a green agenda.
    Keshavarz T; Roy I
    Curr Opin Microbiol; 2010 Jun; 13(3):321-6. PubMed ID: 20227907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome characteristics dictate poly-R-(3)-hydroxyalkanoate production in Cupriavidus necator H16.
    Kutralam-Muniasamy G; Peréz-Guevara F
    World J Microbiol Biotechnol; 2018 May; 34(6):79. PubMed ID: 29799066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances and trends in microbial production of polyhydroxyalkanoates and their building blocks.
    Gao Q; Yang H; Wang C; Xie XY; Liu KX; Lin Y; Han SY; Zhu M; Neureiter M; Lin Y; Ye JW
    Front Bioeng Biotechnol; 2022; 10():966598. PubMed ID: 35928942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polyhydroxyalkanoates from organic waste streams using purple non-sulfur bacteria.
    Montiel-Corona V; Buitrón G
    Bioresour Technol; 2021 Mar; 323():124610. PubMed ID: 33429315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA).
    Chen GQ; Jiang XR; Guo Y
    Synth Syst Biotechnol; 2016 Dec; 1(4):236-242. PubMed ID: 29062949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation.
    Castilho LR; Mitchell DA; Freire DM
    Bioresour Technol; 2009 Dec; 100(23):5996-6009. PubMed ID: 19581084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities.
    Oliveira CS; Silva CE; Carvalho G; Reis MA
    N Biotechnol; 2017 Jul; 37(Pt A):69-79. PubMed ID: 27793692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast method for the determination of short-chain-length polyhydroxyalkanoates (scl-PHAs) in bacterial samples by In Vial-Thermolysis (IVT).
    Abbondanzi F; Biscaro G; Carvalho G; Favaro L; Lemos P; Paglione M; Samorì C; Torri C
    N Biotechnol; 2017 Oct; 39(Pt A):29-35. PubMed ID: 28591645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Research progress in polyhydroxyalkanoates (PHA) and their blend fibers].
    Li Y; Zhang X; Huang W; Chen P; Chen GQ; Tong Y
    Sheng Wu Gong Cheng Xue Bao; 2020 May; 36(5):829-837. PubMed ID: 32567266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.