These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 29019212)

  • 1. [Effect of integration loci of genome on heterologous gene expression in Saccharomyces cerevisiae].
    Zhang W; Tang J; Li B; Yuan Y
    Sheng Wu Gong Cheng Xue Bao; 2016 Jul; 32(7):901-911. PubMed ID: 29019212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Imaging-Based Phenomic Screening Using Yeast (Saccharomyces cerevisiae) Strain Collections.
    Cao X; Jin X; Liu B
    Methods Mol Biol; 2021; 2196():85-95. PubMed ID: 32889715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae.
    Flagfeldt DB; Siewers V; Huang L; Nielsen J
    Yeast; 2009 Oct; 26(10):545-51. PubMed ID: 19681174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robust toolkit for functional profiling of the yeast genome.
    Pan X; Yuan DS; Xiang D; Wang X; Sookhai-Mahadeo S; Bader JS; Hieter P; Spencer F; Boeke JD
    Mol Cell; 2004 Nov; 16(3):487-96. PubMed ID: 15525520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-scale protein function prediction in yeast Saccharomyces cerevisiae through integrating multiple sources of high-throughput data.
    Chen Y; Xu D
    Pac Symp Biocomput; 2005; ():471-82. PubMed ID: 15759652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. dSLAM analysis of genome-wide genetic interactions in Saccharomyces cerevisiae.
    Pan X; Yuan DS; Ooi SL; Wang X; Sookhai-Mahadeo S; Meluh P; Boeke JD
    Methods; 2007 Feb; 41(2):206-21. PubMed ID: 17189863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide landscape of position effects on heterogeneous gene expression in
    Wu XL; Li BZ; Zhang WZ; Song K; Qi H; Dai JB; Yuan YJ
    Biotechnol Biofuels; 2017; 10():189. PubMed ID: 28729884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification of the targets for genetic manipulation to improve L-lactate production by Saccharomyces cerevisiae by using a single-gene deletion strain collection.
    Hirasawa T; Takekuni M; Yoshikawa K; Ookubo A; Furusawa C; Shimizu H
    J Biotechnol; 2013 Oct; 168(2):185-93. PubMed ID: 23665193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Genomic Landscape of Position Effects on Protein Expression Level and Noise in Yeast.
    Chen X; Zhang J
    Cell Syst; 2016 May; 2(5):347-54. PubMed ID: 27185547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for abundant transcription of non-coding regions in the Saccharomyces cerevisiae genome.
    Havilio M; Levanon EY; Lerman G; Kupiec M; Eisenberg E
    BMC Genomics; 2005 Jun; 6():93. PubMed ID: 15960846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. POT1-mediated δ-integration strategy for high-copy, stable expression of heterologous proteins in Saccharomyces cerevisiae.
    Song X; Liu Q; Mao J; Wu Y; Li Y; Gao K; Zhang X; Bai Y; Xu H; Qiao M
    FEMS Yeast Res; 2017 Sep; 17(6):. PubMed ID: 28922845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A system for multilocus chromosomal integration and transformation-free selection marker rescue.
    Siddiqui MS; Choksi A; Smolke CD
    FEMS Yeast Res; 2014 Dec; 14(8):1171-85. PubMed ID: 25226817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomewide screen reveals a wide regulatory network for di/tripeptide utilization in Saccharomyces cerevisiae.
    Cai H; Kauffman S; Naider F; Becker JM
    Genetics; 2006 Mar; 172(3):1459-76. PubMed ID: 16361226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Construction and preliminary applications of a Saccharomyces cerevisiae detection plasmid using for screening promoter elements].
    Wang ZF; Wang ZB; Li LN; Jian-Mei AN; Wang-Wei ; Cheng KD; Kong JQ
    Yao Xue Xue Bao; 2013 Feb; 48(2):228-35. PubMed ID: 23672019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TREC-IN: gene knock-in genetic tool for genomes cloned in yeast.
    Chandran S; Noskov VN; Segall-Shapiro TH; Ma L; Whiteis C; Lartigue C; Jores J; Vashee S; Chuang RY
    BMC Genomics; 2014 Dec; 15(1):1180. PubMed ID: 25539750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide analysis of yeast aging.
    Sutphin GL; Olsen BA; Kennedy BK; Kaeberlein M
    Subcell Biochem; 2012; 57():251-89. PubMed ID: 22094426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic approaches for identifying DNA damage response pathways in S. cerevisiae.
    Chang M; Parsons AB; Sheikh BH; Boone C; Brown GW
    Methods Enzymol; 2006; 409():213-35. PubMed ID: 16793404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global synthetic-lethality analysis and yeast functional profiling.
    Ooi SL; Pan X; Peyser BD; Ye P; Meluh PB; Yuan DS; Irizarry RA; Bader JS; Spencer FA; Boeke JD
    Trends Genet; 2006 Jan; 22(1):56-63. PubMed ID: 16309778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pan-genome of Saccharomyces cerevisiae.
    Li G; Ji B; Nielsen J
    FEMS Yeast Res; 2019 Nov; 19(7):. PubMed ID: 31584649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.