These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 29019366)
1. Moderation of hyperuricemia in rats via consuming walnut protein hydrolysate diet and identification of new antihyperuricemic peptides. Li Q; Kang X; Shi C; Li Y; Majumder K; Ning Z; Ren J Food Funct; 2018 Jan; 9(1):107-116. PubMed ID: 29019366 [TBL] [Abstract][Full Text] [Related]
2. Anti-hyperuricemic peptides derived from bonito hydrolysates based on in vivo hyperuricemic model and in vitro xanthine oxidase inhibitory activity. Li Y; Kang X; Li Q; Shi C; Lian Y; Yuan E; Zhou M; Ren J Peptides; 2018 Sep; 107():45-53. PubMed ID: 30077718 [TBL] [Abstract][Full Text] [Related]
3. Purification and identification of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Chen N; Yang H; Sun Y; Niu J; Liu S Peptides; 2012 Dec; 38(2):344-9. PubMed ID: 23022588 [TBL] [Abstract][Full Text] [Related]
4. In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions. He W; Su G; Sun-Waterhouse D; Waterhouse GIN; Zhao M; Liu Y Food Chem; 2019 Jan; 272():453-461. PubMed ID: 30309568 [TBL] [Abstract][Full Text] [Related]
5. Xanthine oxidase inhibitory activity and antihyperuricemic effect of Moringa oleifera Lam. leaf hydrolysate rich in phenolics and peptides. Tian Y; Lin L; Zhao M; Peng A; Zhao K J Ethnopharmacol; 2021 Apr; 270():113808. PubMed ID: 33450289 [TBL] [Abstract][Full Text] [Related]
6. Flavonoids and phenylethanoid glycosides from Lippia nodiflora as promising antihyperuricemic agents and elucidation of their mechanism of action. Cheng LC; Murugaiyah V; Chan KL J Ethnopharmacol; 2015 Dec; 176():485-93. PubMed ID: 26593216 [TBL] [Abstract][Full Text] [Related]
7. Antioxidative Effects and Mechanism Study of Bioactive Peptides from Defatted Walnut ( Juglans regia L.) Meal Hydrolysate. Sheng J; Yang X; Chen J; Peng T; Yin X; Liu W; Liang M; Wan J; Yang X J Agric Food Chem; 2019 Mar; 67(12):3305-3312. PubMed ID: 30817142 [TBL] [Abstract][Full Text] [Related]
8. New Rice-Derived Short Peptide Potently Alleviated Hyperuricemia Induced by Potassium Oxonate in Rats. Liu N; Wang Y; Yang M; Bian W; Zeng L; Yin S; Xiong Z; Hu Y; Wang S; Meng B; Sun J; Yang X J Agric Food Chem; 2019 Jan; 67(1):220-228. PubMed ID: 30562028 [TBL] [Abstract][Full Text] [Related]
9. Anti-hyperuricemic and nephroprotective effects of whey protein hydrolysate in potassium oxonate induced hyperuricemic rats. Qi X; Chen H; Guan K; Wang R; Ma Y J Sci Food Agric; 2021 Sep; 101(12):4916-4924. PubMed ID: 33543494 [TBL] [Abstract][Full Text] [Related]
10. Effects of extracts from Corylopsis coreana Uyeki (Hamamelidaceae) flos on xanthine oxidase activity and hyperuricemia. Yoon IS; Park DH; Ki SH; Cho SS J Pharm Pharmacol; 2016 Dec; 68(12):1597-1603. PubMed ID: 27696407 [TBL] [Abstract][Full Text] [Related]
12. Effect of Soy Sauce on Serum Uric Acid Levels in Hyperuricemic Rats and Identification of Flazin as a Potent Xanthine Oxidase Inhibitor. Li H; Zhao M; Su G; Lin L; Wang Y J Agric Food Chem; 2016 Jun; 64(23):4725-34. PubMed ID: 27181598 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of antihyperuricemic effect of Phyllanthus niruri and its lignan constituents. Murugaiyah V; Chan KL J Ethnopharmacol; 2009 Jul; 124(2):233-9. PubMed ID: 19397979 [TBL] [Abstract][Full Text] [Related]
14. Identification of the biologically active constituents of Camellia japonica leaf and anti-hyperuricemic effect in vitro and in vivo. Yoon IS; Park DH; Kim JE; Yoo JC; Bae MS; Oh DS; Shim JH; Choi CY; An KW; Kim EI; Kim GY; Cho SS Int J Mol Med; 2017 Jun; 39(6):1613-1620. PubMed ID: 28487949 [TBL] [Abstract][Full Text] [Related]
15. Identification of an ACE-Inhibitory Peptide from Walnut Protein and Its Evaluation of the Inhibitory Mechanism. Wang C; Tu M; Wu D; Chen H; Chen C; Wang Z; Jiang L Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29641461 [TBL] [Abstract][Full Text] [Related]
16. The necessity of walnut proteolysis based on evaluation after in vitro simulated digestion: ACE inhibition and DPPH radical-scavenging activities. Liu D; Guo Y; Wu P; Wang Y; Kwaku Golly M; Ma H Food Chem; 2020 May; 311():125960. PubMed ID: 31862569 [TBL] [Abstract][Full Text] [Related]
17. Separation, identification, and molecular docking of tyrosinase inhibitory peptides from the hydrolysates of defatted walnut (Juglans regia L.) meal. Feng YX; Wang ZC; Chen JX; Li HR; Wang YB; Ren DF; Lu J Food Chem; 2021 Aug; 353():129471. PubMed ID: 33730668 [TBL] [Abstract][Full Text] [Related]
18. A modified xanthine oxidase cell model for screening of antihyperuricemic functional compounds. Hou C; Sha W; Li Y; Yao M; Ren J Food Funct; 2022 Oct; 13(20):10546-10557. PubMed ID: 36155703 [TBL] [Abstract][Full Text] [Related]
19. Isolation of a novel bio-peptide from walnut residual protein inducing apoptosis and autophagy on cancer cells. Ma S; Huang D; Zhai M; Yang L; Peng S; Chen C; Feng X; Weng Q; Zhang B; Xu M BMC Complement Altern Med; 2015 Nov; 15():413. PubMed ID: 26593407 [TBL] [Abstract][Full Text] [Related]
20. Identification of antihyperuricemic peptides in the proteolytic digest of shark cartilage water extract using in vivo activity-guided fractionation. Murota I; Taguchi S; Sato N; Park EY; Nakamura Y; Sato K J Agric Food Chem; 2014 Mar; 62(11):2392-7. PubMed ID: 24588444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]