These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 29019390)
1. Correction to "Pressure-Sensitive and Conductive Carbon Aerogels from Poplars Catkins for Selective Oil Absorption and Oil/Water Separation". Li L; Hu T; Sun H; Zhang J; Wang A ACS Appl Mater Interfaces; 2017 Oct; 9(42):37509. PubMed ID: 29019390 [No Abstract] [Full Text] [Related]
2. Pressure-Sensitive and Conductive Carbon Aerogels from Poplars Catkins for Selective Oil Absorption and Oil/Water Separation. Li L; Hu T; Sun H; Zhang J; Wang A ACS Appl Mater Interfaces; 2017 May; 9(21):18001-18007. PubMed ID: 28492311 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water. Yang Y; Tong Z; Ngai T; Wang C ACS Appl Mater Interfaces; 2014 May; 6(9):6351-60. PubMed ID: 24738840 [TBL] [Abstract][Full Text] [Related]
4. Polypyrrole Nanotube-Derived Carbon Aerogels as Efficient and Recyclable Oil Absorbents. Ji J; Han X; Li L; Yu X J Nanosci Nanotechnol; 2018 Jul; 18(7):4910-4915. PubMed ID: 29442673 [TBL] [Abstract][Full Text] [Related]
5. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition. Song Y; Li B; Yang S; Ding G; Zhang C; Xie X Sci Rep; 2015 May; 5():10337. PubMed ID: 25976019 [TBL] [Abstract][Full Text] [Related]
6. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. He J; Zhao H; Li X; Su D; Zhang F; Ji H; Liu R J Hazard Mater; 2018 Mar; 346():199-207. PubMed ID: 29275109 [TBL] [Abstract][Full Text] [Related]
7. Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications. Wang Z; Wang D; Qian Z; Guo J; Dong H; Zhao N; Xu J ACS Appl Mater Interfaces; 2015 Jan; 7(3):2016-24. PubMed ID: 25558778 [TBL] [Abstract][Full Text] [Related]
8. Strain-driven and ultrasensitive resistive sensor/switch based on conductive alginate/nitrogen-doped carbon-nanotube-supported Ag hybrid aerogels with pyramid design. Zhao S; Zhang G; Gao Y; Deng L; Li J; Sun R; Wong CP ACS Appl Mater Interfaces; 2014 Dec; 6(24):22823-9. PubMed ID: 25423613 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of hydrophobic, electrically conductive and flame-resistant carbon aerogels by pyrolysis of regenerated cellulose aerogels. Wan C; Lu Y; Jiao Y; Jin C; Sun Q; Li J Carbohydr Polym; 2015 Mar; 118():115-8. PubMed ID: 25542115 [TBL] [Abstract][Full Text] [Related]
10. Oil/water separation with selective superantiwetting/superwetting surface materials. Chu Z; Feng Y; Seeger S Angew Chem Int Ed Engl; 2015 Feb; 54(8):2328-38. PubMed ID: 25425089 [TBL] [Abstract][Full Text] [Related]
11. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. Si Y; Fu Q; Wang X; Zhu J; Yu J; Sun G; Ding B ACS Nano; 2015 Apr; 9(4):3791-9. PubMed ID: 25853279 [TBL] [Abstract][Full Text] [Related]
12. Publisher Correction: Highly reusable and superhydrophobic spongy graphene aerogels for efficient oil/water separation. Luo Y; Jiang S; Xiao Q; Chen C; Li B Sci Rep; 2018 Jan; 8(1):273. PubMed ID: 29305579 [TBL] [Abstract][Full Text] [Related]
13. Surface modification of bacterial cellulose aerogels' web-like skeleton for oil/water separation. Sai H; Fu R; Xing L; Xiang J; Li Z; Li F; Zhang T ACS Appl Mater Interfaces; 2015 Apr; 7(13):7373-81. PubMed ID: 25799389 [TBL] [Abstract][Full Text] [Related]
14. Nitrogen self-doped carbon aerogels derived from trifunctional benzoxazine monomers as ultralight supercapacitor electrodes. Zhang M; Chen M; Reddeppa N; Xu D; Jing Q; Zha R Nanoscale; 2018 Apr; 10(14):6549-6557. PubMed ID: 29577146 [TBL] [Abstract][Full Text] [Related]
15. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels. Mulyadi A; Zhang Z; Deng Y ACS Appl Mater Interfaces; 2016 Feb; 8(4):2732-40. PubMed ID: 26761377 [TBL] [Abstract][Full Text] [Related]
16. Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation. Ma Q; Cheng H; Fane AG; Wang R; Zhang H Small; 2016 Apr; 12(16):2186-202. PubMed ID: 27000640 [TBL] [Abstract][Full Text] [Related]
17. Cocoon-in-web-like superhydrophobic aerogels from hydrophilic polyurea and use in environmental remediation. Leventis N; Chidambareswarapattar C; Bang A; Sotiriou-Leventis C ACS Appl Mater Interfaces; 2014 May; 6(9):6872-82. PubMed ID: 24758407 [TBL] [Abstract][Full Text] [Related]
18. Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method. García-Bordejé E; Víctor-Román S; Sanahuja-Parejo O; Benito AM; Maser WK Nanoscale; 2018 Feb; 10(7):3526-3539. PubMed ID: 29410999 [TBL] [Abstract][Full Text] [Related]
19. Mechanical- and oil-durable superhydrophobic polyester materials for selective oil absorption and oil/water separation. Wu L; Zhang J; Li B; Wang A J Colloid Interface Sci; 2014 Jan; 413():112-7. PubMed ID: 24183438 [TBL] [Abstract][Full Text] [Related]
20. High Aspect Ratio Carboxylated Cellulose Nanofibers Cross-linked to Robust Aerogels for Superabsorption-Flocculants: Paving Way from Nanoscale to Macroscale. Wang D; Yu H; Fan X; Gu J; Ye S; Yao J; Ni Q ACS Appl Mater Interfaces; 2018 Jun; 10(24):20755-20766. PubMed ID: 29846056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]