These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 29019390)
21. Bioinspired Ultralight Inorganic Aerogel for Highly Efficient Air Filtration and Oil-Water Separation. Zhang YG; Zhu YJ; Xiong ZC; Wu J; Chen F ACS Appl Mater Interfaces; 2018 Apr; 10(15):13019-13027. PubMed ID: 29611706 [TBL] [Abstract][Full Text] [Related]
22. Solvent-resistant CTAB-modified polymethylsilsesquioxane aerogels for organic solvent and oil adsorption. Lin YF; Hsu SH J Colloid Interface Sci; 2017 Jan; 485():152-158. PubMed ID: 27662027 [TBL] [Abstract][Full Text] [Related]
23. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Wang B; Liang W; Guo Z; Liu W Chem Soc Rev; 2015 Jan; 44(1):336-61. PubMed ID: 25311259 [TBL] [Abstract][Full Text] [Related]
24. Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation. Wu L; Li L; Li B; Zhang J; Wang A ACS Appl Mater Interfaces; 2015 Mar; 7(8):4936-46. PubMed ID: 25671386 [TBL] [Abstract][Full Text] [Related]
25. Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. Venkateswara Rao A; Hegde ND; Hirashima H J Colloid Interface Sci; 2007 Jan; 305(1):124-32. PubMed ID: 17067617 [TBL] [Abstract][Full Text] [Related]
26. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. Korhonen JT; Kettunen M; Ras RH; Ikkala O ACS Appl Mater Interfaces; 2011 Jun; 3(6):1813-6. PubMed ID: 21627309 [TBL] [Abstract][Full Text] [Related]
27. Hydrophobic, Superabsorbing Aerogels from Choline Chloride-Based Deep Eutectic Solvent Pretreated and Silylated Cellulose Nanofibrils for Selective Oil Removal. Laitinen O; Suopajärvi T; Österberg M; Liimatainen H ACS Appl Mater Interfaces; 2017 Jul; 9(29):25029-25037. PubMed ID: 28683195 [TBL] [Abstract][Full Text] [Related]
28. Fabrication and evaluation of nanocellulose sponge for oil/water separation. Phanthong P; Reubroycharoen P; Kongparakul S; Samart C; Wang Z; Hao X; Abudula A; Guan G Carbohydr Polym; 2018 Jun; 190():184-189. PubMed ID: 29628236 [TBL] [Abstract][Full Text] [Related]
30. Carbon Papers and Aerogels Based on Graphene Layers and Chitosan: Direct Preparation from High Surface Area Graphite. Barbera V; Guerra S; Brambilla L; Maggio M; Serafini A; Conzatti L; Vitale A; Galimberti M Biomacromolecules; 2017 Dec; 18(12):3978-3991. PubMed ID: 29131607 [TBL] [Abstract][Full Text] [Related]
31. Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels. Sánchez-Polo M; Rivera-Utrilla J; Salhi E; von Gunten U J Colloid Interface Sci; 2006 Aug; 300(1):437-41. PubMed ID: 16696995 [TBL] [Abstract][Full Text] [Related]
32. Asymmetric Aerogel Membranes with Ultrafast Water Permeation for the Separation of Oil-in-Water Emulsion. Liu Y; Su Y; Guan J; Cao J; Zhang R; He M; Jiang Z ACS Appl Mater Interfaces; 2018 Aug; 10(31):26546-26554. PubMed ID: 30024725 [TBL] [Abstract][Full Text] [Related]
33. Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field. Xu X; Li H; Zhang Q; Hu H; Zhao Z; Li J; Li J; Qiao Y; Gogotsi Y ACS Nano; 2015 Apr; 9(4):3969-77. PubMed ID: 25792130 [TBL] [Abstract][Full Text] [Related]
34. Janus Membranes with Charged Carbon Nanotube Coatings for Deemulsification and Separation of Oil-in-Water Emulsions. An YP; Yang J; Yang HC; Wu MB; Xu ZK ACS Appl Mater Interfaces; 2018 Mar; 10(11):9832-9840. PubMed ID: 29488368 [TBL] [Abstract][Full Text] [Related]
35. Controlling Superwettability by Microstructure and Surface Energy Manipulation on Three-Dimensional Substrates for Versatile Gravity-Driven Oil/Water Separation. Mi HY; Jing X; Huang HX; Turng LS ACS Appl Mater Interfaces; 2017 Nov; 9(43):37529-37535. PubMed ID: 29035037 [TBL] [Abstract][Full Text] [Related]
36. Mechanically stable thermally crosslinked poly(acrylic acid)/reduced graphene oxide aerogels. Ha H; Shanmuganathan K; Ellison CJ ACS Appl Mater Interfaces; 2015 Mar; 7(11):6220-9. PubMed ID: 25714662 [TBL] [Abstract][Full Text] [Related]
37. Cellulose Nanofibril Aerogels: Synergistic Improvement of Hydrophobicity, Strength, and Thermal Stability via Cross-Linking with Diisocyanate. Jiang F; Hsieh YL ACS Appl Mater Interfaces; 2017 Jan; 9(3):2825-2834. PubMed ID: 28079358 [TBL] [Abstract][Full Text] [Related]
38. Superhydrophobic and superoleophilic polydimethylsiloxane-coated cotton for oil-water separation process: An evidence of the relationship between its loading capacity and oil absorption ability. Jin Y; Jiang P; Ke Q; Cheng F; Zhu Y; Zhang Y J Hazard Mater; 2015 Dec; 300():175-181. PubMed ID: 26184799 [TBL] [Abstract][Full Text] [Related]
39. Anomalous dispersion of magnetic spiky particles for enhanced oil emulsions/water separation. Chen HJ; Hang T; Yang C; Liu G; Lin DA; Wu J; Pan S; Yang BR; Tao J; Xie X Nanoscale; 2018 Jan; 10(4):1978-1986. PubMed ID: 29319088 [TBL] [Abstract][Full Text] [Related]
40. Facile immobilization of ag nanocluster on nanofibrous membrane for oil/water separation. Li X; Wang M; Wang C; Cheng C; Wang X ACS Appl Mater Interfaces; 2014 Sep; 6(17):15272-82. PubMed ID: 25116173 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]