BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 29019464)

  • 1. Ovipositor-inspired steerable needle: design and preliminary experimental evaluation.
    Scali M; Pusch TP; Breedveld P; Dodou D
    Bioinspir Biomim; 2017 Dec; 13(1):016006. PubMed ID: 29019464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of an ultra-thin steerable probe for percutaneous interventions and preliminary evaluation in a gelatine phantom.
    Scali M; Veldhoven PAH; Henselmans PWJ; Dodou D; Breedveld P
    PLoS One; 2019; 14(9):e0221165. PubMed ID: 31483792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel curvature-controllable steerable needle for percutaneous intervention.
    Bui VK; Park S; Park JO; Ko SY
    Proc Inst Mech Eng H; 2016 Aug; 230(8):727-38. PubMed ID: 27206444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic-Assisted Needle Steering Around Anatomical Obstacles Using Notched Steerable Needles.
    Khadem M; Rossa C; Usmani N; Sloboda RS; Tavakoli M
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1917-1928. PubMed ID: 29990280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manually controlled steerable needle for MRI-guided percutaneous interventions.
    Henken KR; Seevinck PR; Dankelman J; van den Dobbelsteen JJ
    Med Biol Eng Comput; 2017 Feb; 55(2):235-244. PubMed ID: 27108292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evaluation of a self-propelling bio-inspired needle in single- and multi-layered phantoms.
    Scali M; Breedveld P; Dodou D
    Sci Rep; 2019 Dec; 9(1):19988. PubMed ID: 31882707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate dependency during needle insertions with a biologically inspired steering system: an experimental study.
    Secoli R; Rodriguez y Baena F
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():856-9. PubMed ID: 25570094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue motion due to needle deflection.
    Leibinger A; Burrows C; Oldfield MJ; Rodriguez Y Baena F
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1873-6. PubMed ID: 26736647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A variable stiffness mechanism for steerable percutaneous instruments: integration in a needle.
    De Falco I; Culmone C; Menciassi A; Dankelman J; van den Dobbelsteen JJ
    Med Biol Eng Comput; 2018 Dec; 56(12):2185-2199. PubMed ID: 29862469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of an actively controlled steerable needle with tendon actuation and FBG-based shape sensing.
    van de Berg NJ; Dankelman J; van den Dobbelsteen JJ
    Med Eng Phys; 2015 Jun; 37(6):617-22. PubMed ID: 25922213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steerable needles for radio-frequency ablation in cirrhotic livers.
    van de Berg NJ; Meeuwsen FC; Doukas M; Kronreif G; Moelker A; van den Dobbelsteen JJ
    Sci Rep; 2021 Jan; 11(1):309. PubMed ID: 33431965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser Doppler sensing for blood vessel detection with a biologically inspired steerable needle.
    Virdyawan V; Oldfield M; Rodriguez Y Baena F
    Bioinspir Biomim; 2018 Feb; 13(2):026009. PubMed ID: 29323660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly resolved strain imaging during needle insertion: Results with a novel biologically inspired device.
    Oldfield MJ; Burrows C; Kerl J; Frasson L; Parittotokkaporn T; Beyrau F; Rodriguez y Baena F
    J Mech Behav Biomed Mater; 2014 Feb; 30():50-60. PubMed ID: 24231189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for Improving the Curvature of Steerable Needles in Biological Tissue.
    Adebar TK; Greer JD; Laeseke PF; Hwang GL; Okamura AM
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1167-77. PubMed ID: 26441438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior of tip-steerable needles in ex vivo and in vivo tissue.
    Majewicz A; Marra SP; van Vledder MG; Lin M; Choti MA; Song DY; Okamura AM
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2705-15. PubMed ID: 22711767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histological evaluation of tissue damage caused by rotational needle insertion.
    Tsumura R; Takishita Y; Fukushima Y; Iwata H
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5120-5123. PubMed ID: 28269419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound-guided three-dimensional needle steering in biological tissue with curved surfaces.
    Abayazid M; Moreira P; Shahriari N; Patil S; Alterovitz R; Misra S
    Med Eng Phys; 2015 Jan; 37(1):145-50. PubMed ID: 25455165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimally disruptive needle insertion: a biologically inspired solution.
    Leibinger A; Oldfield MJ; Rodriguez Y Baena F
    Interface Focus; 2016 Jun; 6(3):20150107. PubMed ID: 27274797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive mechanics-based model for depth of cut (DOC) of waterjet in soft tissue for waterjet-assisted medical applications.
    Babaiasl M; Boccelli S; Chen Y; Yang F; Ding JL; Swensen JP
    Med Biol Eng Comput; 2020 Aug; 58(8):1845-1872. PubMed ID: 32514828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation and experimental studies in needle-tissue interactions.
    Konh B; Honarvar M; Darvish K; Hutapea P
    J Clin Monit Comput; 2017 Aug; 31(4):861-872. PubMed ID: 27430491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.