These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29020138)

  • 1. Understanding Causal Distributional and Subgroup Effects With the Instrumental Propensity Score.
    Cheng J; Lin W
    Am J Epidemiol; 2018 Mar; 187(3):614-622. PubMed ID: 29020138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing causal treatment effect estimation when using large observational datasets.
    John ER; Abrams KR; Brightling CE; Sheehan NA
    BMC Med Res Methodol; 2019 Nov; 19(1):207. PubMed ID: 31726969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Propensity scores in observational research].
    Groenwold RH
    Ned Tijdschr Geneeskd; 2013; 157(29):A6179. PubMed ID: 23859107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation.
    Waernbaum I
    Stat Med; 2012 Jul; 31(15):1572-81. PubMed ID: 22359267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-stage instrumental variable methods for estimating the causal odds ratio: analysis of bias.
    Cai B; Small DS; Have TR
    Stat Med; 2011 Jul; 30(15):1809-24. PubMed ID: 21495062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adjusting for Confounding in Early Postlaunch Settings: Going Beyond Logistic Regression Models.
    Schmidt AF; Klungel OH; Groenwold RH;
    Epidemiology; 2016 Jan; 27(1):133-42. PubMed ID: 26436519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tutorial on the use of instrumental variables in pharmacoepidemiology.
    Ertefaie A; Small DS; Flory JH; Hennessy S
    Pharmacoepidemiol Drug Saf; 2017 Apr; 26(4):357-367. PubMed ID: 28239929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Too much ado about propensity score models? Comparing methods of propensity score matching.
    Baser O
    Value Health; 2006; 9(6):377-85. PubMed ID: 17076868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing g-computation, propensity score-based weighting, and targeted maximum likelihood estimation for analyzing externally controlled trials with both measured and unmeasured confounders: a simulation study.
    Ren J; Cislo P; Cappelleri JC; Hlavacek P; DiBonaventura M
    BMC Med Res Methodol; 2023 Jan; 23(1):18. PubMed ID: 36647031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction to propensity scores.
    Williamson EJ; Forbes A
    Respirology; 2014 Jul; 19(5):625-35. PubMed ID: 24889820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining propensity score-based stratification and weighting to improve causal inference in the evaluation of health care interventions.
    Linden A
    J Eval Clin Pract; 2014 Dec; 20(6):1065-71. PubMed ID: 25266868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies with many covariates and few outcomes: selecting covariates and implementing propensity-score-based confounding adjustments.
    Patorno E; Glynn RJ; Hernández-Díaz S; Liu J; Schneeweiss S
    Epidemiology; 2014 Mar; 25(2):268-78. PubMed ID: 24487209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of propensity score methods for pre-specified subgroup analysis with survival data.
    Izem R; Liao J; Hu M; Wei Y; Akhtar S; Wernecke M; MaCurdy TE; Kelman J; Graham DJ
    J Biopharm Stat; 2020 Jul; 30(4):734-751. PubMed ID: 32191555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regularized Regression Versus the High-Dimensional Propensity Score for Confounding Adjustment in Secondary Database Analyses.
    Franklin JM; Eddings W; Glynn RJ; Schneeweiss S
    Am J Epidemiol; 2015 Oct; 182(7):651-9. PubMed ID: 26233956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Longitudinal Studies With Repeated Outcome Measures: Adjusting for Time-Dependent Confounding Using Conventional Methods.
    Keogh RH; Daniel RM; VanderWeele TJ; Vansteelandt S
    Am J Epidemiol; 2018 May; 187(5):1085-1092. PubMed ID: 29020128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propensity-score matching in economic analyses: comparison with regression models, instrumental variables, residual inclusion, differences-in-differences, and decomposition methods.
    Crown WH
    Appl Health Econ Health Policy; 2014 Feb; 12(1):7-18. PubMed ID: 24399360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use and Interpretation of Propensity Scores in Aging Research: A Guide for Clinical Researchers.
    Kim DH; Pieper CF; Ahmed A; Colón-Emeric CS
    J Am Geriatr Soc; 2016 Oct; 64(10):2065-2073. PubMed ID: 27550392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning Random Forests for Causal Inference under Cluster-Level Unmeasured Confounding.
    Suk Y; Kang H
    Multivariate Behav Res; 2023; 58(2):408-440. PubMed ID: 35103508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the impact of unmeasured confounding with internal validation data: an example cost evaluation in type 2 diabetes.
    Faries D; Peng X; Pawaskar M; Price K; Stamey JD; Seaman JW
    Value Health; 2013; 16(2):259-66. PubMed ID: 23538177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.