These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 29020441)
1. Three-Dimensional Printing of Nano Hydroxyapatite/Poly(ester urea) Composite Scaffolds with Enhanced Bioactivity. Yu J; Xu Y; Li S; Seifert GV; Becker ML Biomacromolecules; 2017 Dec; 18(12):4171-4183. PubMed ID: 29020441 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering. Kim H; Hwangbo H; Koo Y; Kim G Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403422 [TBL] [Abstract][Full Text] [Related]
3. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix. Nyberg E; Rindone A; Dorafshar A; Grayson WL Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692 [TBL] [Abstract][Full Text] [Related]
4. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Degli Esposti M; Chiellini F; Bondioli F; Morselli D; Fabbri P Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():286-296. PubMed ID: 30948063 [TBL] [Abstract][Full Text] [Related]
5. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients. Trachtenberg JE; Placone JK; Smith BT; Fisher JP; Mikos AG J Biomater Sci Polym Ed; 2017 Apr; 28(6):532-554. PubMed ID: 28125380 [TBL] [Abstract][Full Text] [Related]
6. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration. Thadavirul N; Pavasant P; Supaphol P J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
8. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation. Paşcu EI; Cahill PA; Stokes J; McGuinness GB J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394 [TBL] [Abstract][Full Text] [Related]
9. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related]
10. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques. Grottkau BE; Hui Z; Yao Y; Pang Y Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530 [TBL] [Abstract][Full Text] [Related]
11. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study. Çakmak S; Çakmak AS; Gümüşderelioğlu M Biomed Mater; 2013 Aug; 8(4):045014. PubMed ID: 23860136 [TBL] [Abstract][Full Text] [Related]
12. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255 [TBL] [Abstract][Full Text] [Related]
13. 3D Printed Poly(𝜀-caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on a Composite Preparation by Melt Blending or Solvent Casting Techniques and the Influence of Bioceramic Content on Scaffold Properties. Biscaia S; Branquinho MV; Alvites RD; Fonseca R; Sousa AC; Pedrosa SS; Caseiro AR; Guedes F; Patrício T; Viana T; Mateus A; Maurício AC; Alves N Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216432 [TBL] [Abstract][Full Text] [Related]
14. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147 [TBL] [Abstract][Full Text] [Related]
15. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935 [TBL] [Abstract][Full Text] [Related]
16. Polymer-ceramic spiral structured scaffolds for bone tissue engineering: effect of hydroxyapatite composition on human fetal osteoblasts. Zhang X; Chang W; Lee P; Wang Y; Yang M; Li J; Kumbar SG; Yu X PLoS One; 2014; 9(1):e85871. PubMed ID: 24475056 [TBL] [Abstract][Full Text] [Related]
17. [Osteogenesis effect of dynamic mechanical loading on MC3T3-E1 cells in three-dimensional printing biomimetic composite scaffolds]. Song X; Li H; Li R; Yuan Q; Liu Y; Cheng W; Zhang X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):448-456. PubMed ID: 29806303 [TBL] [Abstract][Full Text] [Related]
19. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Sultana N; Wang M Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057 [TBL] [Abstract][Full Text] [Related]
20. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]