BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29020445)

  • 1. Direct Metal Writing and Precise Positioning of Gold Nanoparticles within Microfluidic Channels for SERS Sensing of Gaseous Analytes.
    Lee MR; Lee HK; Yang Y; Koh CSL; Lay CL; Lee YH; Phang IY; Ling XY
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39584-39593. PubMed ID: 29020445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential SERS activity of gold and silver nanostructures enabled by adsorbed poly(vinylpyrrolidone).
    Pinkhasova P; Yang L; Zhang Y; Sukhishvili S; Du H
    Langmuir; 2012 Feb; 28(5):2529-35. PubMed ID: 22225536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injection-Molded Microfluidic Device for SERS Sensing Using Embedded Au-Capped Polymer Nanocones.
    Viehrig M; Thilsted AH; Matteucci M; Wu K; Catak D; Schmidt MS; Zór K; Boisen A
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37417-37425. PubMed ID: 30277378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels.
    Xu BB; Ma ZC; Wang L; Zhang R; Niu LG; Yang Z; Zhang YL; Zheng WH; Zhao B; Xu Y; Chen QD; Xia H; Sun HB
    Lab Chip; 2011 Oct; 11(19):3347-51. PubMed ID: 21863148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes.
    Zhang K; Ji J; Li Y; Liu B
    Anal Chem; 2014 Jul; 86(13):6660-5. PubMed ID: 24915488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of thorny Au nanostructures on polyaniline surfaces for sensitive surface-enhanced Raman spectroscopy.
    Li S; Xu P; Ren Z; Zhang B; Du Y; Han X; Mack NH; Wang HL
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):49-54. PubMed ID: 23234505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications.
    Wei H; Rodriguez K; Renneckar S; Leng W; Vikesland PJ
    Analyst; 2015 Aug; 140(16):5640-9. PubMed ID: 26133311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.
    Liu Y; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects.
    Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T
    Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman Characterization of Nanoparticle Transport in Microfluidic Paper-Based Analytical Devices (μPADs).
    Lahr RH; Wallace GC; Vikesland PJ
    ACS Appl Mater Interfaces; 2015 May; 7(17):9139-46. PubMed ID: 25853463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.
    Choi S; Ahn M; Kim J
    Anal Chim Acta; 2013 May; 779():1-7. PubMed ID: 23663665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable photoluminescence and SERS behaviour of additively manufactured Au nanoparticle patterns.
    Aghajani S; Accardo A; Tichem M
    RSC Adv; 2021 May; 11(28):16849-16859. PubMed ID: 35479690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Sensitivity of Surface-Enhanced Raman Scattering with Gold Nanoparticles-Insulator-Metal Sandwich Layers on Flat Sapphire Substrate.
    Li W; Tong X; Yang Z; Zhang J; Liu B; Chen CP
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic
    Nie Y; Jin C; Zhang JXJ
    ACS Sens; 2021 Jul; 6(7):2584-2592. PubMed ID: 34148342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging.
    Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D
    Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement.
    Sztainbuch IW
    J Chem Phys; 2006 Sep; 125(12):124707. PubMed ID: 17014200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.
    Wang C; Wu X; Dong P; Chen J; Xiao R
    Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.