BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29020512)

  • 1. Enhanced α-amylase production by a marine protist, Ulkenia sp. using response surface methodology and genetic algorithm.
    Shirodkar PV; Muraleedharan UD
    Prep Biochem Biotechnol; 2017 Nov; 47(10):1043-1049. PubMed ID: 29020512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical optimization of a high maltose-forming, hyperthermostable and Ca2+-independent alpha-amylase production by an extreme thermophile Geobacillus thermoleovorans using response surface methodology.
    Uma Maheswar Rao JL; Satyanarayana T
    J Appl Microbiol; 2003; 95(4):712-8. PubMed ID: 12969284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mesohaline Thraustochytrid Produces Extremely Halophilic Alpha-Amylases.
    Shirodkar PV; Muraleedharan UD; Damare S; Raghukumar S
    Mar Biotechnol (NY); 2020 Jun; 22(3):403-410. PubMed ID: 32172475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical optimization of alpha-amylase production by Streptomyces erumpens MTCC 7317 cells in calcium alginate beads using response surface methodology.
    Kar S; Ray RC
    Pol J Microbiol; 2008; 57(1):49-57. PubMed ID: 18610656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overcoming hydrolysis of raw corn starch under industrial conditions with Bacillus licheniformis ATCC 9945a α-amylase.
    Šokarda Slavić M; Pešić M; Vujčić Z; Božić N
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2709-19. PubMed ID: 26545758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valorization and optimization of agro-industrial orange waste for the production of enzyme by halophilic Streptomyces sp.
    Ousaadi MI; Merouane F; Berkani M; Almomani F; Vasseghian Y; Kitouni M
    Environ Res; 2021 Oct; 201():111494. PubMed ID: 34171373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving production of hyperthermostable and high maltose-forming alpha-amylase by an extreme thermophile Geobacillus thermoleovorans using response surface methodology and its applications.
    Uma Maheswar Rao JL; Satyanarayana T
    Bioresour Technol; 2007 Jan; 98(2):345-52. PubMed ID: 16473003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medium optimization for pyrroloquinoline quinone (PQQ) production by Methylobacillus sp. zju323 using response surface methodology and artificial neural network-genetic algorithm.
    Wei P; Si Z; Lu Y; Yu Q; Huang L; Xu Z
    Prep Biochem Biotechnol; 2017 Aug; 47(7):709-719. PubMed ID: 28448745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase.
    Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A
    Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical Based Bioprocess Design for Improved Production of Amylase from Halophilic
    Bandal JN; Tile VA; Sayyed RZ; Jadhav HP; Azelee NIW; Danish S; Datta R
    Molecules; 2021 May; 26(10):. PubMed ID: 34064563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical media optimization and production of ITS alpha-amylase from Aspergillus oryzae in a bioreactor.
    Gigras P; Sahai V; Gupta R
    Curr Microbiol; 2002 Sep; 45(3):203-8. PubMed ID: 12177743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amylase production by Saccharomycopsis fibuligera A11 in solid-state fermentation for hydrolysis of Cassava starch.
    Chen L; Chi ZM; Chi Z; Li M
    Appl Biochem Biotechnol; 2010 Sep; 162(1):252-63. PubMed ID: 19701612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18.
    Nwokoro O; Anthonia O
    Acta Sci Pol Technol Aliment; 2015; 14(1):71-75. PubMed ID: 28068022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotechnology approach using watermelon rind for optimization of α-amylase enzyme production from Trichoderma virens using response surface methodology under solid-state fermentation.
    Abdel-Mageed HM; Barakat AZ; Bassuiny RI; Elsayed AM; Salah HA; Abdel-Aty AM; Mohamed SA
    Folia Microbiol (Praha); 2022 Apr; 67(2):253-264. PubMed ID: 34743285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of medium components and cultural variables for enhanced production of acidic high maltose-forming and Ca2+-independent α-amylase by Bacillus acidicola.
    Sharma A; Satyanarayana T
    J Biosci Bioeng; 2011 May; 111(5):550-3. PubMed ID: 21292551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical optimization of alpha-amylase production by probiotic Lactobacillus plantarum MTCC 1407 in submerged fermentation.
    Panda SH; Swain MR; Kar S; Ray RC; Montet D
    Pol J Microbiol; 2008; 57(2):149-55. PubMed ID: 18646403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha-amylase production by Streptomyces erumpens MTCC 7317 in solid state fermentation using response surface methodology (RSM).
    Kar S; Ray RC; Mohapatra UB
    Pol J Microbiol; 2008; 57(4):289-96. PubMed ID: 19275042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization and partial characterization of ca-independent α-amylase from Bacillus amyloliquefaciens BH1.
    Du R; Zhao F; Qiao X; Song Q; Ye G; Wang Y; Wang B; Han Y; Zhou Z
    Prep Biochem Biotechnol; 2018; 48(8):768-774. PubMed ID: 30303444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostable α-amylase immobilization: Enhanced stability and performance for starch biocatalysis.
    Kumar GS; Rather GM; Gurramkonda C; Reddy BR
    Biotechnol Appl Biochem; 2016; 63(1):57-66. PubMed ID: 25604037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thermoactive alpha-amylase from a Bacillus sp. isolated from CSMCRI salt farm.
    Pancha I; Jain D; Shrivastav A; Mishra SK; Shethia B; Mishra S; V P M; Jha B
    Int J Biol Macromol; 2010 Aug; 47(2):288-91. PubMed ID: 20417228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.