These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29020747)

  • 41. High-throughput image segmentation and machine learning approaches in the plant sciences across multiple scales.
    Buckner E; Tong H; Ottley C; Williams C
    Emerg Top Life Sci; 2021 May; 5(2):239-248. PubMed ID: 33660762
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational aspects underlying genome to phenome analysis in plants.
    Bolger AM; Poorter H; Dumschott K; Bolger ME; Arend D; Osorio S; Gundlach H; Mayer KFX; Lange M; Scholz U; Usadel B
    Plant J; 2019 Jan; 97(1):182-198. PubMed ID: 30500991
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding.
    Wasson AP; Rebetzke GJ; Kirkegaard JA; Christopher J; Richards RA; Watt M
    J Exp Bot; 2014 Nov; 65(21):6231-49. PubMed ID: 24963000
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field.
    Wasson A; Bischof L; Zwart A; Watt M
    J Exp Bot; 2016 Feb; 67(4):1033-43. PubMed ID: 26826219
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of domestication on the phenotypic architecture of durum wheat under contrasting nitrogen fertilization.
    Gioia T; Nagel KA; Beleggia R; Fragasso M; Ficco DB; Pieruschka R; De Vita P; Fiorani F; Papa R
    J Exp Bot; 2015 Sep; 66(18):5519-30. PubMed ID: 26071535
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative trait loci for seeding root traits and the relationships between root and agronomic traits in common wheat.
    Li T; Ma J; Zou Y; Chen G; Ding P; Zhang H; Yang C; Mu Y; Tang H; Liu Y; Jiang Q; Chen G; Qi P; Wei Y; Zheng Y; Lan X
    Genome; 2020 Jan; 63(1):27-36. PubMed ID: 31580743
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize.
    Wang W; Guo W; Le L; Yu J; Wu Y; Li D; Wang Y; Wang H; Lu X; Qiao H; Gu X; Tian J; Zhang C; Pu L
    Mol Plant; 2023 Feb; 16(2):354-373. PubMed ID: 36447436
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Disentangling the intertwined genetic bases of root and shoot growth in Arabidopsis.
    Bouteillé M; Rolland G; Balsera C; Loudet O; Muller B
    PLoS One; 2012; 7(2):e32319. PubMed ID: 22384215
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.
    Lee U; Chang S; Putra GA; Kim H; Kim DH
    PLoS One; 2018; 13(4):e0196615. PubMed ID: 29702690
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automated High-Throughput Root Phenotyping of Arabidopsis thaliana Under Nutrient Deficiency Conditions.
    Satbhai SB; Göschl C; Busch W
    Methods Mol Biol; 2017; 1610():135-153. PubMed ID: 28439862
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Drone phenotyping and machine learning enable discovery of loci regulating daily floral opening in lettuce.
    Han R; Wong AJY; Tang Z; Truco MJ; Lavelle DO; Kozik A; Jin Y; Michelmore RW
    J Exp Bot; 2021 Apr; 72(8):2979-2994. PubMed ID: 33681981
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Discovery of new genetic determinants of morphological plasticity in rice roots and shoots under phosphate starvation using GWAS.
    Mai NTP; Mai CD; Nguyen HV; Le KQ; Duong LV; Tran TA; To HTM
    J Plant Physiol; 2021 Feb; 257():153340. PubMed ID: 33388665
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel biomedical image indexing and retrieval system via deep preference learning.
    Pang S; Orgun MA; Yu Z
    Comput Methods Programs Biomed; 2018 May; 158():53-69. PubMed ID: 29544790
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Maize-IAS: a maize image analysis software using deep learning for high-throughput plant phenotyping.
    Zhou S; Chai X; Yang Z; Wang H; Yang C; Sun T
    Plant Methods; 2021 Apr; 17(1):48. PubMed ID: 33926480
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recognizing the hidden half in wheat: root system attributes associated with drought tolerance.
    Li C; Li L; Reynolds MP; Wang J; Chang X; Mao X; Jing R
    J Exp Bot; 2021 Jul; 72(14):5117-5133. PubMed ID: 33783492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. QTL controlling root and shoot traits of maize seedlings under cold stress.
    Hund A; Fracheboud Y; Soldati A; Frascaroli E; Salvi S; Stamp P
    Theor Appl Genet; 2004 Aug; 109(3):618-29. PubMed ID: 15179549
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Application of image-based phenotyping tools to identify QTL for in-field winter survival of winter wheat (Triticum aestivum L.).
    Chen Y; Sidhu HS; Kaviani M; McElroy MS; Pozniak CJ; Navabi A
    Theor Appl Genet; 2019 Sep; 132(9):2591-2604. PubMed ID: 31177292
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computer vision and machine learning for robust phenotyping in genome-wide studies.
    Zhang J; Naik HS; Assefa T; Sarkar S; Reddy RV; Singh A; Ganapathysubramanian B; Singh AK
    Sci Rep; 2017 Mar; 7():44048. PubMed ID: 28272456
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pheno-Deep Counter: a unified and versatile deep learning architecture for leaf counting.
    Giuffrida MV; Doerner P; Tsaftaris SA
    Plant J; 2018 Nov; 96(4):880-890. PubMed ID: 30101442
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exploiting natural variation in root system architecture via genome-wide association studies.
    Deja-Muylle A; Parizot B; Motte H; Beeckman T
    J Exp Bot; 2020 Apr; 71(8):2379-2389. PubMed ID: 31957786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.