BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29020959)

  • 1. Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: proof-of-concept.
    Xu J; Bao T; Lee UH; Kinnaird C; Carender W; Huang Y; Sienko KH; Shull PB
    J Neuroeng Rehabil; 2017 Oct; 14(1):102. PubMed ID: 29020959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell phone based balance trainer.
    Lee BC; Kim J; Chen S; Sienko KH
    J Neuroeng Rehabil; 2012 Feb; 9():10. PubMed ID: 22316167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary Study of Vibrotactile Feedback during Home-Based Balance and Coordination Training in Individuals with Cerebellar Ataxia.
    Jabri S; Bushart DD; Kinnaird C; Bao T; Bu A; Shakkottai VG; Sienko KH
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention.
    Shull PB; Jirattigalachote W; Hunt MA; Cutkosky MR; Delp SL
    Gait Posture; 2014; 40(1):11-9. PubMed ID: 24768525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of different sensory augmentation on weight-shifting balance exercises in Parkinson's disease and healthy elderly people: a proof-of-concept study.
    Lee BC; Thrasher TA; Fisher SP; Layne CS
    J Neuroeng Rehabil; 2015 Sep; 12():75. PubMed ID: 26329918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the preferred modality for real-time biofeedback during balance training.
    Bechly KE; Carender WJ; Myles JD; Sienko KH
    Gait Posture; 2013 Mar; 37(3):391-6. PubMed ID: 23022157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of vibrotactile feedback on postural sway during locomotor activities.
    Sienko KH; Balkwill MD; Oddsson LI; Wall C
    J Neuroeng Rehabil; 2013 Aug; 10():93. PubMed ID: 23938136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in gait and plantar foot loading upon using vibrotactile wearable biofeedback system in patients with stroke.
    Ma CZ; Zheng YP; Lee WC
    Top Stroke Rehabil; 2018 Jan; 25(1):20-27. PubMed ID: 28950803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofeedback improves postural control recovery from multi-axis discrete perturbations.
    Sienko KH; Balkwill MD; Wall C
    J Neuroeng Rehabil; 2012 Aug; 9():53. PubMed ID: 22863399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of vibrotactile biofeedback of trunk sway on balance control in multiple sclerosis.
    van der Logt RP; Findling O; Rust H; Yaldizli O; Allum JH
    Mult Scler Relat Disord; 2016 Jul; 8():58-63. PubMed ID: 27456875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Biofeedback Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait Training: A Pre-Post Controlled Study in Healthy Participants.
    Pinheiro C; Figueiredo J; Magalhães N; Santos CP
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrotactile tilt feedback improves dynamic gait index: a fall risk indicator in older adults.
    Wall C; Wrisley DM; Statler KD
    Gait Posture; 2009 Jul; 30(1):16-21. PubMed ID: 19345107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: a randomized preliminary study.
    Bao T; Carender WJ; Kinnaird C; Barone VJ; Peethambaran G; Whitney SL; Kabeto M; Seidler RD; Sienko KH
    J Neuroeng Rehabil; 2018 Jan; 15(1):5. PubMed ID: 29347946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable Sensor-Based Biofeedback Training for Balance and Gait in Parkinson Disease: A Pilot Randomized Controlled Trial.
    Carpinella I; Cattaneo D; Bonora G; Bowman T; Martina L; Montesano A; Ferrarin M
    Arch Phys Med Rehabil; 2017 Apr; 98(4):622-630.e3. PubMed ID: 27965005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt.
    Wall C; Weinberg MS; Schmidt PB; Krebs DE
    IEEE Trans Biomed Eng; 2001 Oct; 48(10):1153-61. PubMed ID: 11585039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effects of Coding Schemes on Vibrotactile Biofeedback for Dynamic Balance Training in Parkinson's Disease and Healthy Elderly Individuals.
    Lee BC; Fung A; Thrasher TA
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):153-160. PubMed ID: 29053448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of vibrotactile biofeedback training on trunk sway in Parkinson's disease patients.
    Nanhoe-Mahabier W; Allum JH; Pasman EP; Overeem S; Bloem BR
    Parkinsonism Relat Disord; 2012 Nov; 18(9):1017-21. PubMed ID: 22721975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the Effects of Kinesthetic Biofeedback Delivered Using Reaction Wheels on Standing Balance.
    Afzal MR; Eizad A; Palo Peña CE; Yoon J
    J Healthc Eng; 2018; 2018():7892020. PubMed ID: 29991995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of wearable chair on gait, balance, and discomfort of new users during level walking with anterior loads.
    Li YY; Gan J
    J Safety Res; 2023 Dec; 87():27-37. PubMed ID: 38081701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wearable vibrotactile biofeedback system improves balance control of healthy young adults following perturbations from quiet stance.
    Ma CZ; Lee WC
    Hum Mov Sci; 2017 Oct; 55():54-60. PubMed ID: 28763702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.