These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 29021555)

  • 1. Bypassing the Kohn-Sham equations with machine learning.
    Brockherde F; Vogt L; Li L; Tuckerman ME; Burke K; Müller KR
    Nat Commun; 2017 Oct; 8(1):872. PubMed ID: 29021555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning the Hohenberg-Kohn map for molecular excited states.
    Bai Y; Vogt-Maranto L; Tuckerman ME; Glover WJ
    Nat Commun; 2022 Nov; 13(1):7044. PubMed ID: 36396634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to Approximate Density Functionals.
    Kalita B; Li L; McCarty RJ; Burke K
    Acc Chem Res; 2021 Feb; 54(4):818-826. PubMed ID: 33534553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kohn-Sham accuracy from orbital-free density functional theory via Δ-machine learning.
    Kumar S; Jing X; Pask JE; Medford AJ; Suryanarayana P
    J Chem Phys; 2023 Dec; 159(24):. PubMed ID: 38147461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A ground-state-directed optimization scheme for the Kohn-Sham energy.
    Høst S; Jansík B; Olsen J; Jørgensen P; Reine S; Helgaker T
    Phys Chem Chem Phys; 2008 Sep; 10(35):5344-8. PubMed ID: 18766229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
    Gagliardi L; Truhlar DG; Li Manni G; Carlson RK; Hoyer CE; Bao JL
    Acc Chem Res; 2017 Jan; 50(1):66-73. PubMed ID: 28001359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning accurate exchange and correlation functionals of the electronic density.
    Dick S; Fernandez-Serra M
    Nat Commun; 2020 Jul; 11(1):3509. PubMed ID: 32665540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Density Functionals from the Random-Phase Approximation.
    Riemelmoser S; Verdi C; Kaltak M; Kresse G
    J Chem Theory Comput; 2023 Oct; 19(20):7287-7299. PubMed ID: 37800677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine-Learned Kohn-Sham Hamiltonian Mapping for Nonadiabatic Molecular Dynamics.
    Shakiba M; Akimov AV
    J Chem Theory Comput; 2024 Apr; 20(8):2992-3007. PubMed ID: 38581699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subsystem Density Functional Theory Augmented by a Delta Learning Approach to Achieve Kohn-Sham Accuracy.
    Pauletti M; Rybkin VV; Iannuzzi M
    J Chem Theory Comput; 2021 Oct; 17(10):6423-6431. PubMed ID: 34505765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density.
    Seino J; Kageyama R; Fujinami M; Ikabata Y; Nakai H
    J Chem Phys; 2018 Jun; 148(24):241705. PubMed ID: 29960373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connection between Hybrid Functionals and Importance of the Local Density Approximation.
    Mosquera MA; Borca CH; Ratner MA; Schatz GC
    J Phys Chem A; 2016 Mar; 120(9):1605-12. PubMed ID: 26901359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximating the Shifted Hartree-Exchange-Correlation Potential in Direct Energy Kohn-Sham Theory.
    Sharpe DJ; Levy M; Tozer DJ
    J Chem Theory Comput; 2018 Feb; 14(2):684-692. PubMed ID: 29298061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Orbital-Free Density Functional Theory with Small Data Sets and Deep Learning.
    Ryczko K; Wetzel SJ; Melko RG; Tamblyn I
    J Chem Theory Comput; 2022 Feb; 18(2):1122-1128. PubMed ID: 34995061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed.
    Perdew JP; Ruzsinszky A; Constantin LA; Sun J; Csonka GI
    J Chem Theory Comput; 2009 Apr; 5(4):902-8. PubMed ID: 26609599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orbital-free bond breaking via machine learning.
    Snyder JC; Rupp M; Hansen K; Blooston L; Müller KR; Burke K
    J Chem Phys; 2013 Dec; 139(22):224104. PubMed ID: 24329053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient construction of exchange and correlation potentials by inverting the Kohn-Sham equations.
    Kananenka AA; Kohut SV; Gaiduk AP; Ryabinkin IG; Staroverov VN
    J Chem Phys; 2013 Aug; 139(7):074112. PubMed ID: 23968077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning the Physical Nonlocal Exchange-Correlation Functional of Density-Functional Theory.
    Schmidt J; Benavides-Riveros CL; Marques MAL
    J Phys Chem Lett; 2019 Oct; 10(20):6425-6431. PubMed ID: 31596092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Optimization of the Collocation Point Set for Solving the Kohn-Sham Equation.
    Ku J; Kamath A; Carrington T; Manzhos S
    J Phys Chem A; 2019 Dec; 123(49):10631-10642. PubMed ID: 31724862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.