These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29021627)

  • 1. Dispersal of thermophilic beetles across the intercontinental Arctic forest belt during the early Eocene.
    Brunke AJ; Chatzimanolis S; Metscher BD; Wolf-Schwenninger K; Solodovnikov A
    Sci Rep; 2017 Oct; 7(1):12972. PubMed ID: 29021627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals.
    Archibald SB; Johnson KR; Mathewes RW; Greenwood DR
    Proc Biol Sci; 2011 Dec; 278(1725):3679-86. PubMed ID: 21543354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fossil palm beetles refine upland winter temperatures in the Early Eocene Climatic Optimum.
    Archibald SB; Morse GE; Greenwood DR; Mathewes RW
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8095-100. PubMed ID: 24821798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The palaeobiology of high latitude birds from the early Eocene greenhouse of Ellesmere Island, Arctic Canada.
    Stidham TA; Eberle JJ
    Sci Rep; 2016 Feb; 6():20912. PubMed ID: 26867798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bird evolution in the Eocene: climate change in Europe and a Danish fossil fauna.
    Lindow BE; Dyke GJ
    Biol Rev Camb Philos Soc; 2006 Nov; 81(4):483-99. PubMed ID: 16893476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First record of eocene bony fishes and crocodyliforms from Canada's Western Arctic.
    Eberle JJ; Gottfried MD; Hutchison JH; Brochu CA
    PLoS One; 2014; 9(5):e96079. PubMed ID: 24788829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The abrupt climate change at the Eocene-Oligocene boundary and the emergence of South-East Asia triggered the spread of sapindaceous lineages.
    Buerki S; Forest F; Stadler T; Alvarez N
    Ann Bot; 2013 Jul; 112(1):151-60. PubMed ID: 23723259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arctic plant diversity in the Early Eocene greenhouse.
    Harrington GJ; Eberle J; Le-Page BA; Dawson M; Hutchison JH
    Proc Biol Sci; 2012 Apr; 279(1733):1515-21. PubMed ID: 22072610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogeographical patterns of Myrcia s.l. (Myrtaceae) and their correlation with geological and climatic history in the Neotropics.
    Santos MF; Lucas E; Sano PT; Buerki S; Staggemeier VG; Forest F
    Mol Phylogenet Evol; 2017 Mar; 108():34-48. PubMed ID: 28161152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia.
    Sun J; Ni X; Bi S; Wu W; Ye J; Meng J; Windley BF
    Sci Rep; 2014 Dec; 4():7463. PubMed ID: 25501388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Niche evolution through time and across continents: The story of Neotropical Cedrela (Meliaceae).
    Koecke AV; Muellner-Riehl AN; Pennington TD; Schorr G; Schnitzler J
    Am J Bot; 2013 Sep; 100(9):1800-10. PubMed ID: 24018859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. West meets East: How do rainforest beetles become circum-Pacific? Evolutionary origin of Callipogon relictus and allied species (Cerambycidae: Prioninae) in the New and Old Worlds.
    Kim S; de Medeiros BAS; Byun BK; Lee S; Kang JH; Lee B; Farrell BD
    Mol Phylogenet Evol; 2018 Aug; 125():163-176. PubMed ID: 29524651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals.
    Mao K; Hao G; Liu J; Adams RP; Milne RI
    New Phytol; 2010 Oct; 188(1):254-72. PubMed ID: 20561210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Winged fruits and associated leaves of Shorea (Dipterocarpaceae) from the Late Eocene of South China and their phytogeographic and paleoclimatic implications.
    Feng X; Tang B; Kodrul TM; Jin J
    Am J Bot; 2013 Mar; 100(3):574-81. PubMed ID: 23445828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian dispersal at the Paleocene/Eocene boundary.
    Bowen GJ; Clyde WC; Koch PL; Ting S; Alroy J; Tsubamoto T; Wang Y; Wang Y
    Science; 2002 Mar; 295(5562):2062-5. PubMed ID: 11896275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroCT data provide evidence correcting the previous misidentification of an Eocene amber beetle (Coleoptera, Cicindelidae) as an extant species.
    Schmidt J; Scholz S; Wiesner J; Will K
    Sci Rep; 2023 Sep; 13(1):14743. PubMed ID: 37679371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terrestrial cooling in Northern Europe during the eocene-oligocene transition.
    Hren MT; Sheldon ND; Grimes ST; Collinson ME; Hooker JJ; Bugler M; Lohmann KC
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7562-7. PubMed ID: 23610424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by Bayesian analysis.
    Amo de Paz G; Cubas P; Divakar PK; Lumbsch HT; Crespo A
    PLoS One; 2011; 6(12):e28161. PubMed ID: 22174775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Around the world in 40 million years: Phylogeny and biogeography of Tecomeae (Bignoniaceae).
    Ragsac AC; Fabre P; Särkinen T; Olmstead RG
    Mol Phylogenet Evol; 2022 Jan; 166():107335. PubMed ID: 34757167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate transition at the Eocene-Oligocene influenced by bathymetric changes to the Atlantic-Arctic oceanic gateways.
    Straume EO; Nummelin A; Gaina C; Nisancioglu KH
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2115346119. PubMed ID: 35446685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.