BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 29022103)

  • 1. Antidiabetic plant-derived nutraceuticals: a critical review.
    Naveen J; Baskaran V
    Eur J Nutr; 2018 Jun; 57(4):1275-1299. PubMed ID: 29022103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review.
    Rahman MM; Dhar PS; Sumaia ; Anika F; Ahmed L; Islam MR; Sultana NA; Cavalu S; Pop O; Rauf A
    Biomed Pharmacother; 2022 Aug; 152():113217. PubMed ID: 35679719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spice plant Allium cepa: dietary supplement for treatment of type 2 diabetes mellitus.
    Akash MS; Rehman K; Chen S
    Nutrition; 2014 Oct; 30(10):1128-37. PubMed ID: 25194613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective Effects of Medicinal Plant-Based Foods against Diabetes: A Review on Pharmacology, Phytochemistry, and Molecular Mechanisms.
    Ansari P; Samia JF; Khan JT; Rafi MR; Rahman MS; Rahman AB; Abdel-Wahab YHA; Seidel V
    Nutrients; 2023 Jul; 15(14):. PubMed ID: 37513684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A 50-year history of new drugs in Japan-the development and progress of anti-diabetic drugs and the epidemiological aspects of diabetes mellitus].
    Ozawa H; Murai Y; Ozawa T
    Yakushigaku Zasshi; 2003; 38(1):11-27. PubMed ID: 14570054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Plant-Derived Compounds in Managing Diabetes Mellitus: A Review of Literature from 2014 To 2019.
    El-Nashar HAS; Mostafa NM; El-Shazly M; Eldahshan OA
    Curr Med Chem; 2021; 28(23):4694-4730. PubMed ID: 33231145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Herbal Medicines for Diabetes Management and its Secondary Complications.
    Kumar S; Mittal A; Babu D; Mittal A
    Curr Diabetes Rev; 2021; 17(4):437-456. PubMed ID: 33143632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidences for diabetes and insulin mimetic activity of medicinal plants: Present status and future prospects.
    Manukumar HM; Shiva Kumar J; Chandrasekhar B; Raghava S; Umesha S
    Crit Rev Food Sci Nutr; 2017 Aug; 57(12):2712-2729. PubMed ID: 26857927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spondias tuberosa inner bark extract exert antidiabetic effects in streptozotocin-induced diabetic rats.
    de Moura Barbosa H; Amaral D; do Nascimento JN; Machado DC; de Sousa Araújo TA; de Albuquerque UP; Guedes da Silva Almeida JR; Rolim LA; Lopes NP; Gomes DA; Lira EC
    J Ethnopharmacol; 2018 Dec; 227():248-257. PubMed ID: 30176348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antidiabetic Potential of Marine Brown Algae-a Mini Review.
    Gunathilaka TL; Samarakoon K; Ranasinghe P; Peiris LDC
    J Diabetes Res; 2020; 2020():1230218. PubMed ID: 32377517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antidiabetic Potential of Naturally Occurring Sesquiterpenes: A Review.
    Maurya A; Mohan S; Verma SC
    Curr Top Med Chem; 2021; 21(10):851-862. PubMed ID: 33676391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role of Ficus species in the management of diabetes mellitus: A review.
    Deepa P; Sowndhararajan K; Kim S; Park SJ
    J Ethnopharmacol; 2018 Apr; 215():210-232. PubMed ID: 29305899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extract of Ginkgo Biloba Ameliorates Streptozotocin-Induced Type 1 Diabetes Mellitus and High-Fat Diet-Induced Type 2 Diabetes Mellitus in Mice.
    Rhee KJ; Lee CG; Kim SW; Gim DH; Kim HC; Jung BD
    Int J Med Sci; 2015; 12(12):987-94. PubMed ID: 26664261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic Applications of Plant and Nutraceutical-Based Compounds for the Management of Type 2 Diabetes Mellitus: A Narrative Review.
    Dinesh S; Sharma S; Chourasiya R
    Curr Diabetes Rev; 2024; 20(2):e050523216593. PubMed ID: 37151065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular docking studies of (4Z, 12Z)-cyclopentadeca-4, 12-dienone from Grewia hirsuta with some targets related to type 2 diabetes.
    Natarajan A; Sugumar S; Bitragunta S; Balasubramanyan N
    BMC Complement Altern Med; 2015 Mar; 15():73. PubMed ID: 25885803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antidiabetic Naphthoquinones and Their Plant Resources in Thailand.
    Shah MA; Keach JE; Panichayupakaranant P
    Chem Pharm Bull (Tokyo); 2018; 66(5):483-492. PubMed ID: 29710045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antidiabetic properties of lyophilized extract of acorn (Quercus brantii Lindl.) on experimentally STZ-induced diabetic rats.
    Dogan A; Celik I; Kaya MS
    J Ethnopharmacol; 2015 Dec; 176():243-51. PubMed ID: 26505295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase.
    Etxeberria U; de la Garza AL; Campión J; Martínez JA; Milagro FI
    Expert Opin Ther Targets; 2012 Mar; 16(3):269-97. PubMed ID: 22360606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review.
    Antony P; Vijayan R
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antidiabetic activity of perylenequinonoid-rich extract from Shiraia bambusicola in KK-Ay mice with spontaneous type 2 diabetes mellitus.
    Huang M; Zhao P; Xiong M; Zhou Q; Zheng S; Ma X; Xu C; Yang J; Yang X; Zhang TC
    J Ethnopharmacol; 2016 Sep; 191():71-81. PubMed ID: 27286915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.