These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29022105)

  • 1. Structural and electronic study of iron-based dye sensitizers for solar cells using DFT/TDDFT.
    Bourouina A; Rekhis M
    J Mol Model; 2017 Oct; 23(11):310. PubMed ID: 29022105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFT/TD-semiempirical study on the structural and electronic properties and absorption spectra of supramolecular fullerene-porphyrine-metalloporphyrine triads based dye-sensitized solar cells.
    Rezvani M; Darvish Ganji M; Jameh-Bozorghi S; Niazi A
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Apr; 194():57-66. PubMed ID: 29324256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFT/TD-DFT investigation of electronic structures and spectra properties of Cu-based dye sensitizers.
    Lu X; Wu CM; Wei S; Guo W
    J Phys Chem A; 2010 Jan; 114(2):1178-84. PubMed ID: 20000483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclometalated Fe(II) complexes as sensitizers in dye-sensitized solar cells.
    Mukherjee S; Bowman DN; Jakubikova E
    Inorg Chem; 2015 Jan; 54(2):560-9. PubMed ID: 25531506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fe(II)-Polypyridines as Chromophores in Dye-Sensitized Solar Cells: A Computational Perspective.
    Jakubikova E; Bowman DN
    Acc Chem Res; 2015 May; 48(5):1441-9. PubMed ID: 25919490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT study of the spectroscopic behaviour of different iron(II)-terpyridine derivatives with application in DSSCs.
    Athanasopoulos E; Conradie J
    J Mol Graph Model; 2024 Jun; 129():108753. PubMed ID: 38461758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designed complexes combining brazilein and brazilin with betanidin for dye-sensitized solar cell application: DFT and TD-DFT study.
    Malashi NM; Chande Jande YA; Wazzan N; Safi Z; Al-Qurashi OS; Costa R
    J Mol Graph Model; 2024 Mar; 127():108691. PubMed ID: 38086144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigation of new thiazolothiazole-based D-π-A organic dyes for efficient dye-sensitized solar cell.
    Fitri A; Benjelloun AT; Benzakour M; Mcharfi M; Hamidi M; Bouachrine M
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():646-54. PubMed ID: 24513712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT/TD-DFT study of novel T shaped phenothiazine-based organic dyes for dye-sensitized solar cells applications.
    Xu Z; Li Y; Zhang W; Yuan S; Hao L; Xu T; Lu X
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():272-280. PubMed ID: 30658281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the potential of iron to replace ruthenium in photosensitizers: a computational study.
    Malladi S; Yarasi S; Sastry GN
    J Mol Model; 2018 Nov; 24(12):341. PubMed ID: 30460519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsymmetric Ru(II) complexes with N-heterocyclic carbene and/or terpyridine ligands: synthesis, characterization, ground- and excited-state electronic structures and their application for DSSC sensitizers.
    Park HJ; Kim KH; Choi SY; Kim HM; Lee WI; Kang YK; Chung YK
    Inorg Chem; 2010 Aug; 49(16):7340-52. PubMed ID: 20690744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TD-DFT investigation of D-π-A organic dyes with thiophene moieties as π-spacers for use as sensitizers in DSSCs.
    Hasanein AA; Elmarassi YR; Kassem EN
    J Mol Model; 2016 May; 22(5):115. PubMed ID: 27126050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing new quinoline-based organic photosensitizers for dye-sensitized solar cells (DSSC): a theoretical investigation.
    Dos Santos GC; Oliveira EF; Lavarda FC; da Silva-Filho LC
    J Mol Model; 2019 Feb; 25(3):75. PubMed ID: 30798441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the donor group and electron-accepting substitutions inserted in π-linkers in tuning the optoelectronic properties of D-π-A dye-sensitized solar cells: a DFT/TDDFT study.
    Roohi H; Mohtamadifar N
    RSC Adv; 2022 Apr; 12(18):11557-11573. PubMed ID: 35425060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating band-selective sensitization in iron(II) polypyridine-TiO2 assemblies.
    Bowman DN; Blew JH; Tsuchiya T; Jakubikova E
    Inorg Chem; 2013 Aug; 52(15):8621-8. PubMed ID: 23837840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional theory study of new azo dyes with different π-spacers for dye-sensitized solar cells.
    Bagheri Novir S; Hashemianzadeh SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 143():20-34. PubMed ID: 25710111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical design of metal-phthalocyanine dye-sensitized solar cells with improved efficiency.
    Harrath K; Hussain Talib S; Boughdiri S
    J Mol Model; 2018 Sep; 24(10):279. PubMed ID: 30215152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study on p-type D-π-A sensitizers with modified π-spacers for dye-sensitized solar cells.
    Yan W; Chaitanya K; Sun ZD; Ju XH
    J Mol Model; 2018 Feb; 24(3):68. PubMed ID: 29478151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.