These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 29022105)
61. The role of metals and dithiolate ligands on structural, electronic and optical properties of [M(bipyridine)(dithiolate)] complexes: A theoretical study. Samiee S; Taghvaeian S Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 198():150-159. PubMed ID: 29525566 [TBL] [Abstract][Full Text] [Related]
62. Heteroleptic Cu(I) bis-diimine complexes as sensitizers in dye-sensitized solar cells (DSSCs): on some factors affecting intramolecular charge transfer. Mishra R; Jain K; Sharma VP; Kishor S; Ramaniah LM Phys Chem Chem Phys; 2022 Jul; 24(28):17217-17232. PubMed ID: 35793081 [TBL] [Abstract][Full Text] [Related]
63. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Nazeeruddin MK; De Angelis F; Fantacci S; Selloni A; Viscardi G; Liska P; Ito S; Takeru B; Grätzel M J Am Chem Soc; 2005 Dec; 127(48):16835-47. PubMed ID: 16316230 [TBL] [Abstract][Full Text] [Related]
64. Impact of Spin-Orbit Coupling on Photocurrent Generation in Ruthenium Dye-Sensitized Solar Cells. Fantacci S; Ronca E; De Angelis F J Phys Chem Lett; 2014 Jan; 5(2):375-80. PubMed ID: 26270714 [TBL] [Abstract][Full Text] [Related]
65. Theoretical investigation using DFT of quinoxaline derivatives for electronic and photovoltaic effects. El Assyry A; Lamsayah M; Warad I; Touzani R; Bentiss F; Zarrouk A Heliyon; 2020 Mar; 6(3):e03620. PubMed ID: 32211553 [TBL] [Abstract][Full Text] [Related]
66. Structural and optical properties of Purpurin for dye-sensitized solar cells. Ranjitha S; Rajarajan G; Gnanendra TS; Anbarasan PM; Aroulmoji V Spectrochim Acta A Mol Biomol Spectrosc; 2015 Oct; 149():997-1008. PubMed ID: 26037779 [TBL] [Abstract][Full Text] [Related]
67. Density functional theory/time-dependent DFT studies on the structures, trend in DNA-binding affinities, and spectral properties of complexes [Ru(bpy)2(p-R-pip)]2+ (R = -OH, -CH3, -H, -NO2). Li J; Xu LC; Chen JC; Zheng KC; Ji LN J Phys Chem A; 2006 Jul; 110(26):8174-80. PubMed ID: 16805505 [TBL] [Abstract][Full Text] [Related]
68. Substituents effects on two related families of dyes for dye sensitized solar cells: [Ru(4,4'-R,R-2,2'-bpy)(3)]2+ and [Ru(4,4'-COOH-2,2'-bpy)(4,4'-R,R-2,2'-bpy)(2)]2+. Schott E; Zarate X; Arratia-Perez R J Phys Chem A; 2012 Jul; 116(27):7436-42. PubMed ID: 22691087 [TBL] [Abstract][Full Text] [Related]
69. 1,2,4-Triazine-based Materials: Spectroscopic Investigation, DFT, NBO, and TD-DFT Calculations as Well As Dye-sensitized Solar Cells Applications. Sakr MAS; Kana MTHA J Fluoresc; 2022 Nov; 32(6):2053-2063. PubMed ID: 35861897 [TBL] [Abstract][Full Text] [Related]
70. Theoretical description of efficiency enhancement in DSSCs sensitized by newly synthesized heteroleptic Ru complexes. Azar YT; Payami M Phys Chem Chem Phys; 2015 Nov; 17(44):29574-85. PubMed ID: 26477398 [TBL] [Abstract][Full Text] [Related]
71. Exploration of Pull-Push Effect for Novel Photovoltaic Dyes with A-π-D Design: A DFT/TD-DFT Investigation. Hassan AU; Sumrra SH J Fluoresc; 2022 Nov; 32(6):1999-2014. PubMed ID: 35802211 [TBL] [Abstract][Full Text] [Related]
72. High extinction coefficient Ru-sensitizers that promote hole transfer on nanocrystalline TiO₂. Abrahamsson M; Hedberg JH; Becker HC; Staniszewski A; Pearson WH; Heuer WB; Meyer GJ Chemphyschem; 2014 Apr; 15(6):1154-63. PubMed ID: 24648282 [TBL] [Abstract][Full Text] [Related]
73. DFT Study of the CNS Ligand Effect on the Geometry, Spin-State, and Absorption Spectrum in Ruthenium, Iron, and Cobalt Quaterpyridine Complexes. Tsaturyan AA; Budnyk AP; Ramalingan C ACS Omega; 2019 Jun; 4(6):10991-11003. PubMed ID: 31460197 [TBL] [Abstract][Full Text] [Related]
74. DFT-guided structural modeling of end-group acceptors at Y123 core for sensitizers as high-performance organic solar dyes and NLO responses. Hassan AU; Sumrra SH; Zafar M; Mohyuddin A; Noreen S; Güleryüz C J Mol Model; 2023 Jul; 29(8):262. PubMed ID: 37490167 [TBL] [Abstract][Full Text] [Related]
75. Dyes and Redox Couples with Matched Energy Levels: Elimination of the Dye-Regeneration Energy Loss in Dye-Sensitized Solar Cells. Jiang D; Darabedian N; Ghazarian S; Hao Y; Zhgamadze M; Majaryan N; Shen R; Zhou F Chemphyschem; 2015 Nov; 16(16):3385-8. PubMed ID: 26314383 [TBL] [Abstract][Full Text] [Related]
76. Alignment of the dye's molecular levels with the TiO(2) band edges in dye-sensitized solar cells: a DFT-TDDFT study. De Angelis F; Fantacci S; Selloni A Nanotechnology; 2008 Oct; 19(42):424002. PubMed ID: 21832662 [TBL] [Abstract][Full Text] [Related]
77. Mechanism of NO photodissociation in photolabile manganese-NO complexes with pentadentate N5 ligands. Merkle AC; Fry NL; Mascharak PK; Lehnert N Inorg Chem; 2011 Dec; 50(23):12192-203. PubMed ID: 22040173 [TBL] [Abstract][Full Text] [Related]
78. Theoretical design of thiazolothiazole-based organic dyes with different electron donors for dye-sensitized solar cells. Fitri A; Benjelloun AT; Benzakour M; Mcharfi M; Hamidi M; Bouachrine M Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():232-8. PubMed ID: 24866090 [TBL] [Abstract][Full Text] [Related]
79. Theoretical investigation of phenothiazine-triphenylamine-based organic dyes with different π spacers for dye-sensitized solar cells. Chen X; Jia C; Wan Z; Zhang J; Yao X Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():282-9. PubMed ID: 24398472 [TBL] [Abstract][Full Text] [Related]
80. Electronic structures and absorption properties of three kinds of ruthenium dye sensitizers containing bipyridine-pyrazolate for solar cells. Zhang CR; Liu ZJ; Sun YT; Shen YL; Chen YH; Liu YJ; Wang W; Zhang HM Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1843-8. PubMed ID: 21684807 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]