These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 2902217)
21. Structural changes after transmitter release at the frog neuromuscular junction. Heuser JE; Reese TS J Cell Biol; 1981 Mar; 88(3):564-80. PubMed ID: 6260814 [TBL] [Abstract][Full Text] [Related]
22. Membrane events related to transmitter release in mouse motor nerve terminals captured by ultrarapid cryofixation. Velasco ME; Pécot-Dechavassine M J Neurocytol; 1993 Oct; 22(10):913-23. PubMed ID: 7903687 [TBL] [Abstract][Full Text] [Related]
23. Calcium-independent increase of transmitter release at frog end-plate by trinitrobenzene sulphonic acid. Kijima H; Tanabe N J Physiol; 1988 Sep; 403():135-49. PubMed ID: 3150982 [TBL] [Abstract][Full Text] [Related]
24. Equivalence of Ca2+ and Sr2+ in transmitter release from K+-depolarised nerve terminals. Mellow AM Nature; 1979 Nov; 282(5734):84-5. PubMed ID: 41184 [No Abstract] [Full Text] [Related]
25. Effect of chloride ions on giant miniature end-plate potentials at the frog neuromuscular junction. Molenaar PC; Oen BS; Polak RL J Physiol; 1987 Feb; 383():143-52. PubMed ID: 3498819 [TBL] [Abstract][Full Text] [Related]
26. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. Heuser JE; Reese TS J Cell Biol; 1973 May; 57(2):315-44. PubMed ID: 4348786 [TBL] [Abstract][Full Text] [Related]
27. Tetrahydroaminoacridine and physostigmine have opposing effects on probability of transmitter release at the frog neuromuscular junction. Provan SD; Miyamoto MD Neurosci Lett; 1991 Feb; 123(1):127-30. PubMed ID: 1676497 [TBL] [Abstract][Full Text] [Related]
28. Modification by lithium of transmitter release at the neuromuscular junction of the frog. Branisteanu DD; Volle RL J Pharmacol Exp Ther; 1975 Aug; 194(2):362-72. PubMed ID: 239225 [TBL] [Abstract][Full Text] [Related]
29. Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction. Betz WJ; Bewick GS J Physiol; 1993 Jan; 460():287-309. PubMed ID: 8387585 [TBL] [Abstract][Full Text] [Related]
30. Inositol derivatives modulate spontaneous transmitter release at the frog neuromuscular junction. Brailoiu E; Miyamoto MD; Dun NJ Neuropharmacology; 2003 Oct; 45(5):691-701. PubMed ID: 12941382 [TBL] [Abstract][Full Text] [Related]
31. Freeze-fracture studies of frog neuromuscular junctions during intense release of neurotransmitter. III. A morphometric analysis of the number and diameter of intramembrane particles. Fesce R; Grohovaz F; Hurlbut WP; Ceccarelli B J Cell Biol; 1980 May; 85(2):337-45. PubMed ID: 6103002 [TBL] [Abstract][Full Text] [Related]
32. Lanthanum as a surrogate for calcium in transmitter release at mouse motor nerve terminals. Curtis MJ; Quastel DM; Saint DA J Physiol; 1986 Apr; 373():243-60. PubMed ID: 2875177 [TBL] [Abstract][Full Text] [Related]
33. Temperature-sensitive aspects of evoked and spontaneous transmitter release at the frog neuromuscular junction. Barrett EF; Barrett JN; Botz D; Chang DB; Mahaffey D J Physiol; 1978 Jun; 279():253-73. PubMed ID: 209175 [TBL] [Abstract][Full Text] [Related]
34. Synapsin I partially dissociates from synaptic vesicles during exocytosis induced by electrical stimulation. Torri Tarelli F; Bossi M; Fesce R; Greengard P; Valtorta F Neuron; 1992 Dec; 9(6):1143-53. PubMed ID: 1463610 [TBL] [Abstract][Full Text] [Related]
35. Effects of staurosporine on exocytosis and endocytosis at frog motor nerve terminals. Becherer U; Guatimosim C; Betz W J Neurosci; 2001 Feb; 21(3):782-7. PubMed ID: 11157064 [TBL] [Abstract][Full Text] [Related]
36. A Ca2+-induced Ca2+ release mechanism involved in asynchronous exocytosis at frog motor nerve terminals. Narita K; Akita T; Osanai M; Shirasaki T; Kijima H; Kuba K J Gen Physiol; 1998 Nov; 112(5):593-609. PubMed ID: 9806968 [TBL] [Abstract][Full Text] [Related]
37. Effects of high-potassium solutions and caffeine on synaptic vesicle exoendocytosis processes in the frog neuromuscular junction. Zefirov AL; Abdrakhmanov MM; Grigor'ev PN Neurosci Behav Physiol; 2006 Sep; 36(7):781-8. PubMed ID: 16841161 [TBL] [Abstract][Full Text] [Related]
38. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release. Cooper RL; Winslow JL; Govind CK; Atwood HL J Neurophysiol; 1996 Jun; 75(6):2451-66. PubMed ID: 8793756 [TBL] [Abstract][Full Text] [Related]
39. Effects of black widow spider venom and Ca2+ on quantal secretion at the frog neuromuscular junction. Fesce R; Segal JR; Ceccarelli B; Hurlbut WP J Gen Physiol; 1986 Jul; 88(1):59-81. PubMed ID: 3488369 [TBL] [Abstract][Full Text] [Related]
40. Frequency and amplitude gradients of spontaneous release along the length of the frog neuromuscular junction. Robitaille R; Tremblay JP Synapse; 1989; 3(4):291-307. PubMed ID: 2568018 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]