BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 29022265)

  • 1. Exercise Amaliorates Metabolic Disturbances and Oxidative Stress in Diabetic Cardiomyopathy: Possible Underlying Mechanisms.
    Mahmoud AM
    Adv Exp Med Biol; 2017; 999():207-230. PubMed ID: 29022265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How exercise may amend metabolic disturbances in diabetic cardiomyopathy.
    Hafstad AD; Boardman N; Aasum E
    Antioxid Redox Signal; 2015 Jun; 22(17):1587-605. PubMed ID: 25738326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac effects of HDL and its components on diabetic cardiomyopathy.
    Spillmann F; Van Linthout S; Tschöpe C
    Endocr Metab Immune Disord Drug Targets; 2012 Jun; 12(2):132-47. PubMed ID: 22236025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of cardiac pathology in diabetes - Experimental insights.
    Varma U; Koutsifeli P; Benson VL; Mellor KM; Delbridge LMD
    Biochim Biophys Acta Mol Basis Dis; 2018 May; 1864(5 Pt B):1949-1959. PubMed ID: 29109032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smad3 Signaling Promotes Fibrosis While Preserving Cardiac and Aortic Geometry in Obese Diabetic Mice.
    Biernacka A; Cavalera M; Wang J; Russo I; Shinde A; Kong P; Gonzalez-Quesada C; Rai V; Dobaczewski M; Lee DW; Wang XF; Frangogiannis NG
    Circ Heart Fail; 2015 Jul; 8(4):788-98. PubMed ID: 25985794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rutin alleviates diabetic cardiomyopathy and improves cardiac function in diabetic ApoEknockout mice.
    Huang R; Shi Z; Chen L; Zhang Y; Li J; An Y
    Eur J Pharmacol; 2017 Nov; 814():151-160. PubMed ID: 28826911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Oxidative Stress in Metabolic and Subcellular Abnormalities in Diabetic Cardiomyopathy.
    Dhalla NS; Shah AK; Tappia PS
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diabetic Cardiomyopathy: From Mechanism to Management in a Nutshell.
    Khan S; Ahmad SS; Kamal MA
    Endocr Metab Immune Disord Drug Targets; 2021; 21(2):268-281. PubMed ID: 32735531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress: a key contributor to diabetic cardiomyopathy.
    Khullar M; Al-Shudiefat AA; Ludke A; Binepal G; Singal PK
    Can J Physiol Pharmacol; 2010 Mar; 88(3):233-40. PubMed ID: 20393588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment.
    Falcão-Pires I; Leite-Moreira AF
    Heart Fail Rev; 2012 May; 17(3):325-44. PubMed ID: 21626163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial dysfunction in diabetic cardiomyopathy.
    Duncan JG
    Biochim Biophys Acta; 2011 Jul; 1813(7):1351-9. PubMed ID: 21256163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes.
    Huynh K; Kiriazis H; Du XJ; Love JE; Jandeleit-Dahm KA; Forbes JM; McMullen JR; Ritchie RH
    Diabetologia; 2012 May; 55(5):1544-53. PubMed ID: 22374176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effects of Diabetes Induction on the Rat Heart: Differences in Oxidative Stress, Inflammatory Cells, and Fibrosis between Subendocardial and Interstitial Myocardial Areas.
    Guido MC; Marques AF; Tavares ER; Tavares de Melo MD; Salemi VMC; Maranhão RC
    Oxid Med Cell Longev; 2017; 2017():5343972. PubMed ID: 28781721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy.
    Parim B; Sathibabu Uddandrao VV; Saravanan G
    Heart Fail Rev; 2019 Mar; 24(2):279-299. PubMed ID: 30349977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Intensity Exercise Reduces Cardiac Fibrosis and Hypertrophy but Does Not Restore the Nitroso-Redox Imbalance in Diabetic Cardiomyopathy.
    Novoa U; Arauna D; Moran M; Nuñez M; Zagmutt S; Saldivia S; Valdes C; Villaseñor J; Zambrano CG; Gonzalez DR
    Oxid Med Cell Longev; 2017; 2017():7921363. PubMed ID: 28698769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Updating experimental models of diabetic cardiomyopathy.
    Fuentes-Antrás J; Picatoste B; Gómez-Hernández A; Egido J; Tuñón J; Lorenzo Ó
    J Diabetes Res; 2015; 2015():656795. PubMed ID: 25973429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways.
    Huynh K; Bernardo BC; McMullen JR; Ritchie RH
    Pharmacol Ther; 2014 Jun; 142(3):375-415. PubMed ID: 24462787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets.
    Sung MM; Hamza SM; Dyck JR
    Antioxid Redox Signal; 2015 Jun; 22(17):1606-30. PubMed ID: 25808033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoamine oxidase-A is an important source of oxidative stress and promotes cardiac dysfunction, apoptosis, and fibrosis in diabetic cardiomyopathy.
    Umbarkar P; Singh S; Arkat S; Bodhankar SL; Lohidasan S; Sitasawad SL
    Free Radic Biol Med; 2015 Oct; 87():263-73. PubMed ID: 26122707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential.
    Faria A; Persaud SJ
    Pharmacol Ther; 2017 Apr; 172():50-62. PubMed ID: 27916650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.