These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 29022347)
1. Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat. Straub AP; Elimelech M Environ Sci Technol; 2017 Nov; 51(21):12925-12937. PubMed ID: 29022347 [TBL] [Abstract][Full Text] [Related]
2. Hybrid pressure retarded osmosis-membrane distillation system for power generation from low-grade heat: thermodynamic analysis and energy efficiency. Lin S; Yip NY; Cath TY; Osuji CO; Elimelech M Environ Sci Technol; 2014 May; 48(9):5306-13. PubMed ID: 24724732 [TBL] [Abstract][Full Text] [Related]
3. Stack Thermo-Osmotic System for Low-Grade Thermal Energy Conversion. Li J; Zhang Z; Zhao R; Zhang B; Liang Y; Long R; Liu W; Liu Z ACS Appl Mater Interfaces; 2021 May; 13(18):21371-21378. PubMed ID: 33905242 [TBL] [Abstract][Full Text] [Related]
4. Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat. Shaulsky E; Boo C; Lin S; Elimelech M Environ Sci Technol; 2015 May; 49(9):5820-7. PubMed ID: 25839239 [TBL] [Abstract][Full Text] [Related]
5. Enhancing Thermo-Osmotic Low-Grade Heat Recovery by Applying a Negative Pressure to the Feed. Zhang Y; Li J; Zhang Z; Liu W; Liu Z Glob Chall; 2023 Apr; 7(4):2200238. PubMed ID: 37020626 [TBL] [Abstract][Full Text] [Related]
6. Osmotic Heat Engine Using Thermally Responsive Ionic Liquids. Zhong Y; Wang X; Feng X; Telalovic S; Gnanou Y; Huang KW; Hu X; Lai Z Environ Sci Technol; 2017 Aug; 51(16):9403-9409. PubMed ID: 28693317 [TBL] [Abstract][Full Text] [Related]
7. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis. Yip NY; Elimelech M Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients. Yip NY; Vermaas DA; Nijmeijer K; Elimelech M Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542 [TBL] [Abstract][Full Text] [Related]
9. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. Klaysom C; Cath TY; Depuydt T; Vankelecom IF Chem Soc Rev; 2013 Aug; 42(16):6959-89. PubMed ID: 23778699 [TBL] [Abstract][Full Text] [Related]
10. Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation. Straub AP; Lin S; Elimelech M Environ Sci Technol; 2014 Oct; 48(20):12435-44. PubMed ID: 25222561 [TBL] [Abstract][Full Text] [Related]
11. Thermo-Osmotic Energy Conversion Enabled by Covalent-Organic-Framework Membranes with Record Output Power Density. Zuo X; Zhu C; Xian W; Meng QW; Guo Q; Zhu X; Wang S; Wang Y; Ma S; Sun Q Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202116910. PubMed ID: 35179288 [TBL] [Abstract][Full Text] [Related]
12. Experimental investigation of a spiral-wound pressure-retarded osmosis membrane module for osmotic power generation. Kim YC; Kim Y; Oh D; Lee KH Environ Sci Technol; 2013 Mar; 47(6):2966-73. PubMed ID: 23398240 [TBL] [Abstract][Full Text] [Related]
13. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis. Yip NY; Elimelech M Environ Sci Technol; 2011 Dec; 45(23):10273-82. PubMed ID: 22022858 [TBL] [Abstract][Full Text] [Related]
14. Pressure retarded osmosis for energy production: membrane materials and operating conditions. Kim H; Choi JS; Lee S Water Sci Technol; 2012; 65(10):1789-94. PubMed ID: 22546793 [TBL] [Abstract][Full Text] [Related]
15. A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat. Zhu X; Rahimi M; Gorski CA; Logan B ChemSusChem; 2016 Apr; 9(8):873-9. PubMed ID: 26990485 [TBL] [Abstract][Full Text] [Related]
16. Ceramic-metal composites for heat exchangers in concentrated solar power plants. Caccia M; Tabandeh-Khorshid M; Itskos G; Strayer AR; Caldwell AS; Pidaparti S; Singnisai S; Rohskopf AD; Schroeder AM; Jarrahbashi D; Kang T; Sahoo S; Kadasala NR; Marquez-Rossy A; Anderson MH; Lara-Curzio E; Ranjan D; Henry A; Sandhage KH Nature; 2018 Oct; 562(7727):406-409. PubMed ID: 30333580 [TBL] [Abstract][Full Text] [Related]
17. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Yip NY; Tiraferri A; Phillip WA; Schiffman JD; Hoover LA; Kim YC; Elimelech M Environ Sci Technol; 2011 May; 45(10):4360-9. PubMed ID: 21491936 [TBL] [Abstract][Full Text] [Related]
18. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects. Yip NY; Brogioli D; Hamelers HV; Nijmeijer K Environ Sci Technol; 2016 Nov; 50(22):12072-12094. PubMed ID: 27718544 [TBL] [Abstract][Full Text] [Related]
19. Energy efficiency of membrane distillation: Simplified analysis, heat recovery, and the use of waste-heat. Christie KSS; Horseman T; Lin S Environ Int; 2020 May; 138():105588. PubMed ID: 32126386 [TBL] [Abstract][Full Text] [Related]
20. Asymmetric Thermoelectrochemical Cell for Harvesting Low-grade Heat under Isothermal Operation. Mu K; Wang X; Ho Li K; Huang YT; Feng SP J Vis Exp; 2020 Feb; (156):. PubMed ID: 32091002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]