These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29022372)

  • 41. Thermodynamic descriptors derived from density functional theory calculations in prediction of aquatic toxicity.
    Smiesko M; Benfenati E
    J Chem Inf Model; 2005; 45(2):379-85. PubMed ID: 15807503
    [TBL] [Abstract][Full Text] [Related]  

  • 42. QSTR with extended topochemical atom (ETA) indices. 12. QSAR for the toxicity of diverse aromatic compounds to Tetrahymena pyriformis using chemometric tools.
    Roy K; Ghosh G
    Chemosphere; 2009 Nov; 77(7):999-1009. PubMed ID: 19709717
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemistry-toxicity relationships for the effects of di- and trihydroxybenzenes to Tetrahymena pyriformis.
    Aptula AO; Roberts DW; Cronin MT; Schultz TW
    Chem Res Toxicol; 2005 May; 18(5):844-54. PubMed ID: 15892578
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches.
    Singh KP; Gupta S
    Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Experimental reactivity parameters for toxicity modeling: application to the acute aquatic toxicity of SN2 electrophiles to Tetrahymena pyriformis.
    Roberts DW; Schultz TW; Wolf EM; Aptula AO
    Chem Res Toxicol; 2010 Jan; 23(1):228-34. PubMed ID: 19928804
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ecotoxicity prediction using mechanism- and non-mechanism-based QSARs: a preliminary study.
    Ren S
    Chemosphere; 2003 Dec; 53(9):1053-65. PubMed ID: 14512109
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of random forest approach to QSAR prediction of aquatic toxicity.
    Polishchuk PG; Muratov EN; Artemenko AG; Kolumbin OG; Muratov NN; Kuz'min VE
    J Chem Inf Model; 2009 Nov; 49(11):2481-8. PubMed ID: 19860412
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two QSAR models for predicting the toxicity of chemicals towards
    Jia Q; Wang S; Yu M; Wang Q; Yan F
    SAR QSAR Environ Res; 2023 Feb; 34(2):147-161. PubMed ID: 36749040
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Random forest algorithm-based accurate prediction of chemical toxicity to Tetrahymena pyriformis.
    Fang Z; Yu X; Zeng Q
    Toxicology; 2022 Oct; 480():153325. PubMed ID: 36115645
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Partial least squares modelling of the acute toxicity of aliphatic compounds to Tetrahymena pyriformis.
    Netzeva TI; Schultz TW; Aptula AO; Cronin MT
    SAR QSAR Environ Res; 2003 Aug; 14(4):265-83. PubMed ID: 14506870
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biopartitioning micellar chromatography: an alternative high-throughput method for assessing the ecotoxicity of anilines and phenols.
    Bermúdez-Saldaña JM; Escuder-Gilabert L; Medina-Hernández MJ; Villanueva-Camañas RM; Sagrado S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jun; 852(1-2):353-61. PubMed ID: 17347057
    [TBL] [Abstract][Full Text] [Related]  

  • 52. QSAR modelling using combined simple competitive learning networks and RBF neural networks.
    Sheikhpour R; Sarram MA; Rezaeian M; Sheikhpour E
    SAR QSAR Environ Res; 2018 Apr; 29(4):257-276. PubMed ID: 29372662
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relationships of quantitative structure-activity to comparative toxicity of selected phenols in the Pimephales promelas and Tetrahymena pyriformis test systems.
    Schultz TW; Holcombe GW; Phipps GL
    Ecotoxicol Environ Saf; 1986 Oct; 12(2):146-53. PubMed ID: 3098546
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bee algorithm and adaptive neuro-fuzzy inference system as tools for QSAR study toxicity of substituted benzenes to Tetrahymena pyriformis.
    Zarei K; Atabati M; Kor K
    Bull Environ Contam Toxicol; 2014 Jun; 92(6):642-9. PubMed ID: 24638918
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative QSAR studies on toxicity of phenol derivatives using quantum topological molecular similarity indices.
    Hemmateenejad B; Mehdipour AR; Miri R; Shamsipur M
    Chem Biol Drug Des; 2010 May; 75(5):521-31. PubMed ID: 20486939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Building up a QSAR model for toxicity toward Tetrahymena pyriformis by the Monte Carlo method: A case of benzene derivatives.
    Toropova AP; Schultz TW; Toropov AA
    Environ Toxicol Pharmacol; 2016 Mar; 42():135-45. PubMed ID: 26851376
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The use of the ionization constant (pKa) in selecting models of toxicity in phenols.
    Schultz TW
    Ecotoxicol Environ Saf; 1987 Oct; 14(2):178-83. PubMed ID: 3121279
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of quantitative structure-activity relationships for the toxicity of aromatic compounds to Tetrahymena pyriformis: comparative assessment of the methodologies.
    Cronin MT; Schultz TW
    Chem Res Toxicol; 2001 Sep; 14(9):1284-95. PubMed ID: 11559045
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel approach to predict a toxicological property of aromatic compounds in the Tetrahymena pyriformis.
    González MP; Díaz HG; Cabrera MA; Ruiz RM
    Bioorg Med Chem; 2004 Feb; 12(4):735-44. PubMed ID: 14759733
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Probabilistic neural network modeling of the toxicity of chemicals to Tetrahymena pyriformis with molecular fragment descriptors.
    Kaiser KL; Niculescu SP; Schultz TW
    SAR QSAR Environ Res; 2002 Mar; 13(1):57-67. PubMed ID: 12074392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.