BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29022502)

  • 1. Pathophysiological Role of Mitochondrial Potassium Channels and their Modulation by Drugs.
    Citi V; Calderone V; Martelli A; Breschi MC; Testai L
    Curr Med Chem; 2018; 25(23):2661-2674. PubMed ID: 29022502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Regulation of the mitochondrial ATP-sensitive potassium channel in rat uterus cells by ROS].
    Badziuk OB; Mazur IuIu; Kosterin SO
    Ukr Biokhim Zh (1999); 2011; 83(3):48-57. PubMed ID: 21888054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial ATP-sensitive potassium channel activation protects cerebellar granule neurons from apoptosis induced by oxidative stress.
    Teshima Y; Akao M; Li RA; Chong TH; Baumgartner WA; Johnston MV; Marbán E
    Stroke; 2003 Jul; 34(7):1796-802. PubMed ID: 12791941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial K(ATP) channels in cell survival and death.
    Ardehali H; O'Rourke B
    J Mol Cell Cardiol; 2005 Jul; 39(1):7-16. PubMed ID: 15978901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial potassium channels as pharmacological target for cardioprotective drugs.
    Testai L; Rapposelli S; Martelli A; Breschi MC; Calderone V
    Med Res Rev; 2015 May; 35(3):520-53. PubMed ID: 25346462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the mitochondrial ATP-sensitive K+ channel reduces apoptosis of spleen mononuclear cells induced by hyperlipidemia.
    Alberici LC; Paim BA; Zecchin KG; Mirandola SR; Pestana CR; Castilho RF; Vercesi AE; Oliveira HC
    Lipids Health Dis; 2013 Jun; 12():87. PubMed ID: 23764148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production.
    Facundo HT; de Paula JG; Kowaltowski AJ
    Free Radic Biol Med; 2007 Apr; 42(7):1039-48. PubMed ID: 17349931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria.
    Busija DW; Katakam P; Rajapakse NC; Kis B; Grover G; Domoki F; Bari F
    Brain Res Bull; 2005 Jul; 66(2):85-90. PubMed ID: 15982523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial ATP-sensitive K+ channel opening decreases reactive oxygen species generation.
    Ferranti R; da Silva MM; Kowaltowski AJ
    FEBS Lett; 2003 Feb; 536(1-3):51-5. PubMed ID: 12586337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium channels in brain mitochondria.
    Bednarczyk P
    Acta Biochim Pol; 2009; 56(3):385-92. PubMed ID: 19759922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial K(ATP) channel as an end effector of cardioprotection during late preconditioning: triggering role of nitric oxide.
    Wang Y; Kudo M; Xu M; Ayub A; Ashraf M
    J Mol Cell Cardiol; 2001 Nov; 33(11):2037-46. PubMed ID: 11708847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iptakalim ameliorates MPP+-induced astrocyte mitochondrial dysfunction by increasing mitochondrial complex activity besides opening mitoK(ATP) channels.
    Zhang S; Ding JH; Zhou F; Wang ZY; Zhou XQ; Hu G
    J Neurosci Res; 2009 Apr; 87(5):1230-9. PubMed ID: 19006086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative Targets for Modulators of Mitochondrial Potassium Channels.
    Wrzosek A; Gałecka S; Żochowska M; Olszewska A; Kulawiak B
    Molecules; 2022 Jan; 27(1):. PubMed ID: 35011530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isoflurane activates human cardiac mitochondrial adenosine triphosphate-sensitive K+ channels reconstituted in lipid bilayers.
    Jiang MT; Nakae Y; Ljubkovic M; Kwok WM; Stowe DF; Bosnjak ZJ
    Anesth Analg; 2007 Oct; 105(4):926-32, table of contents. PubMed ID: 17898367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperlipidemic mice present enhanced catabolism and higher mitochondrial ATP-sensitive K+ channel activity.
    Alberici LC; Oliveira HC; Patrício PR; Kowaltowski AJ; Vercesi AE
    Gastroenterology; 2006 Oct; 131(4):1228-34. PubMed ID: 17030192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mitochondrial potassium cycle.
    Garlid KD; Paucek P
    IUBMB Life; 2001; 52(3-5):153-8. PubMed ID: 11798027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ROS-independent preconditioning in neurons via activation of mitoK(ATP) channels by BMS-191095.
    Gáspár T; Snipes JA; Busija AR; Kis B; Domoki F; Bari F; Busija DW
    J Cereb Blood Flow Metab; 2008 Jun; 28(6):1090-103. PubMed ID: 18212794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavonoids as new regulators of mitochondrial potassium channels: contribution to cardioprotection.
    Kampa RP; Sęk A; Bednarczyk P; Szewczyk A; Calderone V; Testai L
    J Pharm Pharmacol; 2023 Apr; 75(4):466-481. PubMed ID: 36508341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential role of mitochondrial Ca2+-activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection.
    Wang X; Fisher PW; Xi L; Kukreja RC
    J Mol Cell Cardiol; 2008 Jan; 44(1):105-13. PubMed ID: 18021798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species mediate the neuroprotection conferred by a mitochondrial ATP-sensitive potassium channel opener during ischemia in the rat hippocampal slice.
    Liang HW; Xia Q; Bruce IC
    Brain Res; 2005 May; 1042(2):169-75. PubMed ID: 15854588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.