These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29022510)

  • 21. An enzymatic transglycosylation of purine bases.
    Roivainen J; Elizarova T; Lapinjoki S; Mikhailopulo IA; Esipov RS; Miroshnikov AI
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(8-9):905-9. PubMed ID: 18058506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biased Borate Esterification during Nucleoside Phosphorylase-Catalyzed Reactions: Apparent Equilibrium Shifts and Kinetic Implications.
    Kaspar F; Brandt F; Westarp S; Eilert L; Kemper S; Kurreck A; Neubauer P; Jacob CR; Schallmey A
    Angew Chem Int Ed Engl; 2023 May; 62(20):e202218492. PubMed ID: 36655928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Enzymatic transglycosylation of natural and modified nucleosides by immobilized thermostable nucleoside phosphorylases from Geobacillus stearothermophilus].
    Taran SA; Verevkina KN; Feofanov SA; Miroshnikov AI
    Bioorg Khim; 2009; 35(6):822-9. PubMed ID: 20208582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical Approaches to Carbocyclic Nucleosides.
    Ojeda-Porras AC; Roy V; Agrofoglio LA
    Chem Rec; 2022 May; 22(5):e202100307. PubMed ID: 35119191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using ionic liquids in whole-cell biocatalysis for the nucleoside acylation.
    Yang M; Wu H; Lian Y; Li X; Ren Y; Lai F; Zhao G
    Microb Cell Fact; 2014 Oct; 13():143. PubMed ID: 25273324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioprocess development to produce a hyperthermostable S-methyl-5'-thioadenosine phosphorylase in Escherichia coli.
    Schollmeyer J; Waldburger S; Njo K; Yehia H; Kurreck A; Neubauer P; Riedel SL
    Biotechnol Bioeng; 2023 Nov; 120(11):3322-3334. PubMed ID: 37574915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides.
    Baldessari A; Iglesias LE
    Methods Mol Biol; 2012; 861():457-69. PubMed ID: 22426734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expedient and generic synthesis of imidazole nucleosides by enzymatic transglycosylation.
    Vichier-Guerre S; Dugué L; Bonhomme F; Pochet S
    Org Biomol Chem; 2016 Apr; 14(14):3638-53. PubMed ID: 26986701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Industrial potential of the enzymatic synthesis of nucleoside analogs: existing challenges and perspectives.
    Westarp S; Kaspar F; Neubauer P; Kurreck A
    Curr Opin Biotechnol; 2022 Dec; 78():102829. PubMed ID: 36332344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient Synthesis of Purine Nucleoside Analogs by a New Trimeric Purine Nucleoside Phosphorylase from
    Liu G; Cheng T; Chu J; Li S; He B
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31888088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of Fluorine-Containing Analogues of Purine Deoxynucleosides: Optimization of Enzymatic Transglycosylation Conditions.
    Drenichev MS; Dorinova EO; Varizhuk IV; Oslovsky VE; Varga MA; Esipov RS; Lykoshin DD; Alexeev CS
    Dokl Biochem Biophys; 2022 Apr; 503(1):52-58. PubMed ID: 35538278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient Biocatalytic Synthesis of Dihalogenated Purine Nucleoside Analogues Applying Thermodynamic Calculations.
    Yehia H; Westarp S; Röhrs V; Kaspar F; Giessmann RT; Klare HFT; Paulick K; Neubauer P; Kurreck J; Wagner A
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32093094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arthrobacter oxydans as a biocatalyst for purine deamination.
    Médici R; Lewkowicz ES; Iribarren AM
    FEMS Microbiol Lett; 2008 Dec; 289(1):20-6. PubMed ID: 19054089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of 9-beta-d-arabinofuranosylguanine by combined use of two whole cell biocatalysts.
    Médici R; Iribarren AM; Lewkowicz ES
    Bioorg Med Chem Lett; 2009 Aug; 19(15):4210-2. PubMed ID: 19523826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-surface engineering of yeasts for whole-cell biocatalysts.
    Ye M; Ye Y; Du Z; Chen G
    Bioprocess Biosyst Eng; 2021 Jun; 44(6):1003-1019. PubMed ID: 33389168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient microwave-assisted solid phase coupling of nucleosides, small library generation and mild conditions for release of nucleoside derivatives.
    Paritala H; Suzuki Y; Carroll KS
    Tetrahedron Lett; 2013 Apr; 54(14):1869-1872. PubMed ID: 23794759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immobilization techniques applied to the development of biocatalysts for the synthesis of nucleoside analogue derivatives.
    Trelles JA; Lapponiab MJ
    Curr Pharm Des; 2017 Dec; ():. PubMed ID: 29205113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strained Conformations of Nucleosides in Active Sites of Nucleoside Phosphorylases.
    Il'icheva IA; Polyakov KM; Mikhailov SN
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32260512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Purine and pyrimidine nucleoside phosphorylases - remarkable enzymes still not fully understood].
    Bzowska A
    Postepy Biochem; 2015; 61(3):260-73. PubMed ID: 26677573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.