These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 29022694)
1. Enhancing Distorted Metal-Organic Framework-Derived ZnO as Anode Material for Lithium Storage by the Addition of Ag Song W; Brugge R; Theodorou IG; Lim AL; Yang Y; Zhao T; Burgess CH; Johnson ID; Aguadero A; Shearing PR; Brett DJL; Xie F; Riley DJ ACS Appl Mater Interfaces; 2017 Nov; 9(43):37823-37831. PubMed ID: 29022694 [TBL] [Abstract][Full Text] [Related]
2. Strategy for the Preparation of ZnS/ZnO Composites Derived from Metal-Organic Frameworks toward Lithium Storage. Huang B; Zhang Y; Zhong H; Wu Y; Lin X; Xu W; Ma G Inorg Chem; 2024 Jul; 63(26):12281-12289. PubMed ID: 38902887 [TBL] [Abstract][Full Text] [Related]
3. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework. Yang SJ; Nam S; Kim T; Im JH; Jung H; Kang JH; Wi S; Park B; Park CR J Am Chem Soc; 2013 May; 135(20):7394-7. PubMed ID: 23647071 [TBL] [Abstract][Full Text] [Related]
4. Amorphous ZnO Quantum Dot/Mesoporous Carbon Bubble Composites for a High-Performance Lithium-Ion Battery Anode. Tu Z; Yang G; Song H; Wang C ACS Appl Mater Interfaces; 2017 Jan; 9(1):439-446. PubMed ID: 27966898 [TBL] [Abstract][Full Text] [Related]
5. Metal-Organic Frameworks Derived Porous Core/Shell Structured ZnO/ZnCo2O4/C Hybrids as Anodes for High-Performance Lithium-Ion Battery. Ge X; Li Z; Wang C; Yin L ACS Appl Mater Interfaces; 2015 Dec; 7(48):26633-42. PubMed ID: 26572922 [TBL] [Abstract][Full Text] [Related]
6. CuFeS Guo P; Song H; Liu Y; Wang C ACS Appl Mater Interfaces; 2017 Sep; 9(37):31752-31762. PubMed ID: 28845961 [TBL] [Abstract][Full Text] [Related]
7. MOF-Derived ZnO/Ni3ZnC0.7/C Hybrids Yolk-Shell Microspheres with Excellent Electrochemical Performances for Lithium Ion Batteries. Zhao Y; Li X; Liu J; Wang C; Zhao Y; Yue G ACS Appl Mater Interfaces; 2016 Mar; 8(10):6472-80. PubMed ID: 26895382 [TBL] [Abstract][Full Text] [Related]
8. Formation of N-Doped Carbon-Coated ZnO/ZnCo Niu JL; Zeng CH; Peng HJ; Lin XM; Sathishkumar P; Cai YP Small; 2017 Dec; 13(47):. PubMed ID: 29076648 [TBL] [Abstract][Full Text] [Related]
9. Enhanced field emission properties of ZnO-Ag2S core-shell heterojunction nanowires. Wang G; Li M; Chen C; Lv S; Liao J; Li Z Dalton Trans; 2016 Jun; 45(21):8777-82. PubMed ID: 27142998 [TBL] [Abstract][Full Text] [Related]
10. MOF-derived cobalt-doped ZnO@C composites as a high-performance anode material for lithium-ion batteries. Yue H; Shi Z; Wang Q; Cao Z; Dong H; Qiao Y; Yin Y; Yang S ACS Appl Mater Interfaces; 2014 Oct; 6(19):17067-74. PubMed ID: 25222492 [TBL] [Abstract][Full Text] [Related]
11. Electrostatic Assembly of Sandwich-like Ag-C@ZnO-C@Ag-C Hybrid Hollow Microspheres with Excellent High-Rate Lithium Storage Properties. Xie Q; Ma Y; Wang X; Zeng D; Wang L; Mai L; Peng DL ACS Nano; 2016 Jan; 10(1):1283-91. PubMed ID: 26624924 [TBL] [Abstract][Full Text] [Related]
12. MOF-Derived ZnO Nanoparticles Covered by N-Doped Carbon Layers and Hybridized on Carbon Nanotubes for Lithium-Ion Battery Anodes. Zhang H; Wang Y; Zhao W; Zou M; Chen Y; Yang L; Xu L; Wu H; Cao A ACS Appl Mater Interfaces; 2017 Nov; 9(43):37813-37822. PubMed ID: 28990751 [TBL] [Abstract][Full Text] [Related]
13. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Zhang G; Hou S; Zhang H; Zeng W; Yan F; Li CC; Duan H Adv Mater; 2015 Apr; 27(14):2400-5. PubMed ID: 25728828 [TBL] [Abstract][Full Text] [Related]
14. Titanicone-derived TiO Fang JB; Liu C; Zi TQ; Cao YQ; Wu D; Li AD Dalton Trans; 2020 Aug; 49(31):10866-10873. PubMed ID: 32716435 [TBL] [Abstract][Full Text] [Related]
15. Aptamer and 5-fluorouracil dual-loading Ag Jin H; Gui R; Gong J; Huang W Biosens Bioelectron; 2017 Jun; 92():378-384. PubMed ID: 27836590 [TBL] [Abstract][Full Text] [Related]
16. A ZnO-graphene hybrid with remarkably enhanced lithium storage capability. Li S; Xiao Y; Wang X; Cao M Phys Chem Chem Phys; 2014 Dec; 16(47):25846-53. PubMed ID: 25353394 [TBL] [Abstract][Full Text] [Related]
17. One-pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide composite powders with superior electrochemical properties for lithium-ion batteries. Park GD; Choi SH; Lee JK; Kang YC Chemistry; 2014 Sep; 20(38):12183-9. PubMed ID: 25111441 [TBL] [Abstract][Full Text] [Related]
18. A Lithium Ion Highway by Surface Coordination Polymerization: In Situ Growth of Metal-Organic Framework Thin Layers on Metal Oxides for Exceptional Rate and Cycling Performance. Han Y; Yu D; Zhou J; Xu P; Qi P; Wang Q; Li S; Fu X; Gao X; Jiang C; Feng X; Wang B Chemistry; 2017 Aug; 23(48):11513-11518. PubMed ID: 28707378 [TBL] [Abstract][Full Text] [Related]
19. ZnO@Ag2S core-shell nanowire arrays for environmentally friendly solid-state quantum dot-sensitized solar cells with panchromatic light capture and enhanced electron collection. Zhang X; Liu J; Zhang J; Vlachopoulos N; Johansson EM Phys Chem Chem Phys; 2015 May; 17(19):12786-95. PubMed ID: 25907247 [TBL] [Abstract][Full Text] [Related]
20. Metal-Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries. Sui ZY; Zhang PY; Xu MY; Liu YW; Wei ZX; Han BH ACS Appl Mater Interfaces; 2017 Dec; 9(49):43171-43178. PubMed ID: 29148701 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]